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well, we compute the liftings of a Nichols algebra of Cartan type Az if
the diagonal elements of the braiding matrix are cube roots of 1; this
case was not completely covered in previous work of Andruskiewitsch
and Schneider. We study the problem of when the liftings of a given
Nichols algebra are quasi-isomorphic. The Appendix (with I. Rutherford)
contains a generalization of the quantum binomial formula. This formula
was used in the computation of liftings of type B2 but is also of interest
independent of these results.

1. Introduction and preliminaries

Let k be an algebraically closed field of characteristic zero. Several classification
results for finite dimensional pointed Hopf algebras have been obtained in recent
years (see 1] for a survey). The most powerful general method for classifying such
Hopf algebras is the lifting method developed by N. Andruskiewitsch and H.-J.
Schneider. If A is a finite dimensional pointed Hopf algebra with coradical k", I’
a group, then there exists a Hopf algebra projection from gr(A), the associated
graded Hopf algebra, to kI, and this projection splits the inclusion of £I" in
gr(A) as the degree 0 component. Then the subalgebra R of kI'-coinvariants
of gr(A), called the diagram of A, has a Hopf algebra structure in the braided
category ¥LYD of Yetter-Drinfeld modules over kI'. One can also associate to A
the Yetter-Drinfeld module V of primitive elements of R, called the infinitesimal
braiding of A. The Hopf algebra gr(A) can be reconstructed by bosonization
from R, i.e., gr(A) ~ R#kT, the biproduct in the sense of D. Radford or S.
Majid. The lifting procedure consists first in finding all the possible diagrams R,
then bosonizing to gr(A), and finally lifting the information (i.e., presentation
by generators and relations) from gr{A) to A.

Assume that ' is a fixed finite abelian group. If V is a Yetter-Drinfeld module,
the Nichols algebra B(V) is a graded Hopf algebra in the category g;yv with k1
as the homogeneous component of degree 0, V' as the homogeneous component of
degree 1, and B(V') is generated in degree 1 as an algebra. Nichols algebras were
introduced in [15] (see [2] for a general presentation of the construction of and
recent developments in Nichols algebras). Their role in the classification theory
for pointed Hopf algebras was emphasized in [5]. A fundamental question is
whether the diagram R of A is just the Nichols algebra B(V) of the infinitesimal
braiding of A. A positive answer to this question is equivalent to proving the
conjecture that any finite dimensional pointed Hopf algebra is generated as an
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algebra by the grouplike elements and the skew-primitive elements. Up to this
conjecture, the lifting method for classifying finite dimensional pointed Hopf
algebras A with coradical kT reduces to finding all the Yetter—Drinfeld modules
V such that B(V) is finite dimensional, then describing the Nichols algebra B(V)
by generators and relations for any such V, and finally finding A such that the
associated graded Hopf algebra gr(A) is isomorphic to the biproduct B(V)#kI.
Such an A is called a lifting of B(V)#kT.

A major step in the classification problem was done in [5], where the approach
was from the point of view of Lie theory. For certain Hopf algebras A (or for
any A if the exponent of T' is prime), the infinitesimal braiding has a generalized
Cartan matrix as an invariant. Then the dimension of B(V') and the structure of
this algebra, reflecting that of A, depend on this Cartan matrix and on its Dynkin
diagram. As an example, the lifting method was used in [6] to describe liftings of
Nichols algebras of Cartan type Az, and as a consequence classify pointed Hopf
algebras of dimension p*, with p an odd prime. Also, the lifting method was used
in [10] to classify pointed Hopf algebras of dimension 32.

The main aim of this paper is to compute liftings of Nichols algebras of Cartan
type By. The description of these Nichols algebras is known (see [5] and [17]).
We follow the general approach that was used in [6] for type As. The problem of
lifting the generators and relations from gr(A4) to A has a combinatorial nature,
and compared to the As case, the case of Cartan type Bs requires more compli-
cated combinatorics. This is because the structure of the positive roots, which
define a system of generators for the Nichols algebra, is more complicated in type
By. To deal with these combinatorial difficulties, we use a generalization of the
quantum binomial formula presented in the Appendix. In Section 2 we compute
the liftings in type Bs. We require that the diagonal elements of the braiding
matrix are primitive n-th roots of odd order not equal to 5. In fact, in type A,
there was also a case for which the computation in [6] failed, more precisely the
case where the diagonal elements of the braiding matrix were primitive roots of
unity of order 3. In Section 3, we show how this remaining case can be completed.

The first examples of infinite families of nonisomorphic Hopf algebras of the
7], and
E. Miiller’s family of nonisomorphic nonpointed Hopf algebras with nonpointed
duals [14]. However, A. Masuoka [12] showed that these infinite families consist
of Hopf algebras that are all quasi-isomorphic, i.e., that any element of the family

same dimension were liftings of quantum linear spaces [4], [9], [8] or [

is a cocycle twist of any other, or equivalently, their categories of comodules are
monoidally Morita-Takeuchi equivalent (see [12] or [17]). We prove in Section 3
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that for n # 5 and V of type Bs or for n # 3 and V of type Ag, any two liftings
of B(V)#kI" are quasi-isomorphic.

Recall from any standard text (such as [11]) the notation for g-factorials and
g-binomial coefficients. Set (0)g = 0 and for n > 0,(n)g =¢"* +¢" 2 +---+ 1.
Set (0)!y =1 and for n > 0, (n)!y = (n)q(n — 1)4---1. Then

n\ _ (n)! )
(é)q = (775!:_(5!; where 0 <7 < n.

If i, or n — 7 is negative, then we set ('l.’)q =0.

THEOREM 1.1: (i) (The g-Pascal identity). Forn > k > 1,

(), G2, o (), - () oG,

(ii) (The q-binomial theorem). For x,z elements of some k-algebra with zx =

gxz, q € k*, then
n
(x+ 2)" Z( ) |

1=

For A a pointed Hopf algebra with coradical kI, we denote by P(A)g s or
Py h, if A is clear, the set {r: x € A,A(x) = g® 2z +2®h}. For x € I,
P, ={x € Pyp:lzl™ =x(l)x foralll € T'}.

Notation: We write Py for Py, and FY for PY,.

For any coalgebra C, gr(C), the graded vector space Co ®C1/Co@Cs/C1 B+ -
is a graded coalgebra. If A is a pointed Hopf algebra, then gr(A) is a graded
Hopf algebra.

A Yetter-Drinfeld module V € ¥LYD is a vector space with a left action of
kT and a left coaction §: V — kI’ ® V, 8(v) = >_v_1 ® vo such that §(hv) =
Shv_th~'®@hvy forany heMandve V.

Throughout, I will be a fixed finite abelian group and k an algebraically closed
field of characteristic zero.

2. Liftings of Nichols algebras of type B;

For T our fixed finite abelian group, let V be a Yetter-Drinfeld module over kI'
of dimension 2. Then V has a basis {x1, 2} over k such that for i = 1,2, the
coaction is given by §(x;) = ¢; ® x; where g; € I', and the action is given by
g = z; = xi(g)x; for some x; € T', all g € T. The braiding matrix of V" is

by b2
B =
(bm b2 )
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where b;; = x;(g:). We assume that V has Cartan type Bo, i.e., b;;b;; = b;” for
any i, j, where the a;;’s are the entries of the Cartan matrix of type By

A= (_?2 —21>.

bizbay = b1}, barbia = byy,

Thus we have

s0
(1) biobarbir = 1, borbiobs, =1, by = b3,.

We assume that by = ¢ is a primitive root of unity of odd order n and therefore so
is b11 = q°. We fix the Yetter-Drinfeld module V of type By as above throughout
all this section.

The Nichols algebra B(V') has dimension n* (see [5] and [17]). It is presented
by generators i, z2, z, u subject to the relations

z =xaT1 — bo1217;
U =x9z — ba1bagzxy;
212 =bjozxy;
Tol =b21b§2ux2;
uz =by1bo1 2u;
x1u =bytbuzy + byy (bay — 1)2%
2t =zl =" =u" =0.

Then H = B(V)#k[I has dimension n*|['| where |['| is the order of I'. Our goal
in this section is to find all Hopf algebras A such that gr(A4) = H.

Let A be such a lifting. By [4, Lemma 5.4], we have that A has coradical &[T']
and P(A)p, = k(h — 1) unless h = g;,4 = 1,2. If h = g; then P,, has dimension
2 and Py, = k(g; — 1) ® ka; where ka; = PX:. The image of a; in Aq/Ap, is just
x;. Thus we have A(a;) = ¢ ® a; + a; ® 1. For h € T, ha; = x;(h)a;h and, in
particular, g;a; = xi(g9;)@ig; = bjia:g;.

Let — denote the adjoint action and define elements

(2) C= a9 — a1 = 401 — b21a1a2 and d= g — C = AyC — b21b2200,2.

The following lemma will be useful in determining the multiplication of the
elements aq, a9, ¢, d.
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LEMMA 2.1: Let n, xi,g; be as above. The following assertions hold.

1.

Fori=1,2, if x} # ¢, then P(A);‘Z =

2. Either (x1x2)" = € or P(A)E;:;;)): =0
3. Either (x1x3)" = ¢ or P(A)X%)" = 0,
91292)
4. For n different from 5, P(A)X; X2 .
5. If n is different from 3 and 5, then P(A)Xlg’<2 =
2
Proof:
1. If X7 # e, then P(A);(,’": # 0 implies that x7 = x; and g = g; where

j=1or2 Ifx? = x; then d?~! = 1, which is impossible. If x? = x;,j # 4,
then 1 = b;; and b" = b;;. But since (b12b21)™ = 1, this is impossible.

Suppose {xi1x2)" # € and P(A)E;‘:;z # 0. Then (x1x2)" = Xxi, so that

bi; = b} Also (g192)" = g, so that b;; = b7;. This contradicts (b;;b;;)" = 1.

Suppose (x1x3)" # € and P(A)Z,“;Z #0. If (x1x3)™ = x1 and (g193)" =

g1, then b7 ' = 7" = by2™ so that 1 = b3, which is impossible. If
(x1x3)"™ = x2 and (g192)® = go, then b2" L= = bg’f’l. But then
1 = (b12ba1)?" ™! = (b1abo1) ™! = by1, also a contradiction.

. For n # 5,x3x2 # €. For if x?x2 = ¢, then b3 ;b1p = 1 = b%lbzz. But

then b2 = ¢~% and b3, = ¢! so that ¢ 8¢~ = (b12b21)? = ¢~ so that

= 1, which would imply that n = 5. Thus if P(A )’““ # 0, then
g3gs = g; for i = 1,2. But if g}go = g1, then g1g2 = 1 s0 that biibar =1
and bigbes = 1. The first equation implies b2 = 1 so that the second
implies bys = ¢ = 1, which is impossible. If g2gs = g2 then g? = 1 so that
g* = 1, which contradicts the assumption that n is odd.
If x1x3 = € then byybd, = 1 = by1b3,. Then b3, = ¢72 and by = ¢~ 3.
Thus (b12b21)® = ¢! but (612621)3 = ¢7% by (1). Since n # 5, this is
a contradiction. Thus if P(A )XIXZ # 0, P(A );‘1‘;‘; = P(A)Y fori =1,2.
If 9195 = g1, then g3 =1 and b22 = ¢® = 1, which contradicts the fact
that n is not 3. If g193 = go, then g192 = 1 so that b1103; = 1 = b12b3,.
Multiplying the second equation by b2y yields b2; = 1 and then the first
equation implies b;; = 1. But then ¢ = 1, which is impossible. |

Straightforward calculation shows that

(3)

Ale) = g1g2@c+e®1+ (1 — g Hasg @ ay.
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Now we compute

Aare) =(@ @1+ g1 @) (192 @ c+ @ 1+ (1 = ¢ H)azgs @ ay)
=a19192 Qc+a1c@1+ (1 - q’2)a1a291 Qa1+ 9%92 ®ayc
+g1c®ar + (1 - ¢ ?)g1a291 ® a?

and

Aleay) =(gi1ga @c+c® 1+ (1-q a1 @a1)(a1®1+ g1 ®ay)
=g19201 @ c+ca1 ® 1+ (1 — ¢ >)azgia; ® ay
+ gfgg Qcay+ecgr @ay+ (1~ q"2)aggf ® a%.

2
Then using the relations (1), we see that ayc — biaca; € P(A);‘;;; and thus by
1
Lemma 2.1 (4), if n # 5,

(4) ajc— b120a1 =0.

Similarly, using the definition of d and the comultiplication of ¢ and ag, we
compute

(5) Ad) =dR1+ 9195 ®d+q(1— ¢ *)azgig2@c+(1—¢ ) (1 - g adg1 @ai.

Further computation shows that das — bysas2d is (glgg,l)—primitive and by
Lemma 2.1 (5), if n # 3,5, then

(6) da2 - blgagd =0.
Now, using (4) and (6), we compute

day =(agc — barbaacas)ay
=as(ba1b3ya1c) — barbogc(bararas + c)
:b21b52(b21a1(12 + C)C - bglbzg(bl_;alc)az — b21b2262

=b5b55a1(az¢ — ba1byacaz) + barbas(bas — 1)c?,
so that
(7) day = (b21b22)2a1d+ (b21b22)(q - 1)02.
A similar computation shows that

(8) cd = blgdc.
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Now since a; is (g1, 1)-primitive and ¢ = x;(g1) is a primitive n-th root of
unity, we have that af € P(A);‘{‘,. If xT # € then we must have that a} = 0 since

P(A);‘{;;1 = 0, by Lemma 2.1 (1), but if xT = ¢, then a} = a(g} — 1) for some
o € k. By a similar argument for a} and rescaling the q; if necessary, we have

(9) al = pi(g —1), where p; € {0,1},p;, =0if g7 =1 or X} #e.

Remark 2.2: If b3, # 1, or equivalently b7, # 1, then ys = 0 = y;. For suppose
2. # 1. Then xT(g2) = b3, # 1, so x7 # € and then py = 0. Also since
x3(g1) = b}, # 1, we have that x§ # ¢, and then py = 0.

Now we compute ¢™ and d™; these are the most intricate computations.

By Equation (3), A(c) = X +Y + (1 ~¢2)Z where X = 9192 ®¢, Y =c®1,
Z = as91®a;. Then,since XY =qY X, X7 = ¢ZX, and ¢ is a primitive nth root
of unity, we see that A(c") = (X +Y +(1—-¢2)Z)" = X" +(Y + (1 —q~2?)Z)".
Now

ZY —qY Z =a3g1c¢ ® a1 — qcasg @ aq

=bizb1162¢c91 ® a1 — qeazgr ® ay
=b12b3,dg1 @ a1.

Let T denote dg; ® a1. Then it is easily checked that ZT = ¢°TZ and
TY = ¢?YT, so that by Remark A.7 of the Appendix, (Y + (1 —~ ¢ 2)Z)" =
Y™ + (1 -¢7?)"Z". Thus

A(C) =(9192)" @ "+ " @14+ (1 — ¢ (a261)" ® a}

=(g192)" ® " + @1+ (1 = 725" "2 (g1) s (gF — 1) @ a]
=(q192)" @ " + " @ 1+ (¢* — 1)"pa(91)"(95 — 1) ® af,
since b3, = 1 if po # 0 by Remark 2.2. Let
(10) v ="+ pa(g? - 1)"af.
Then A(v) is
(9192)" ®c™ + c* ® 1+ (¢ — 1)"pa(g1)" (95 — 1) ® a} + pa(q® — 1)"g} ® a]
+ p2(g® = )"a? @ 1.

It follows that v € P(A)g;‘:;‘;)),," . Thus by Lemma 2.1 (2),

v=c"+ p2(q® - 1)"a} = Aglgs — 1)

11
(11) where A =01if gT¢7 =1 or (x1x2)" # €
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Remark 2.3: If b}, # 1, then A = 0. Indeed, (x1x2)"(g1) = b7y # 1, which
forces A = 0.

We now compute d”. From (5), we see that A(d) = X +Y + bZ + T where
X =g195 @ d,
Y =d®1,
Z =a3g192®c and b=q(1—q7?),
T=(1-¢*)(t~q a3g ®ar.

It is easy to check that XY = ¢*YX,ZY = ¢*YZ,TY = ¢?YT, so that by
Theorem (1.1)(ii), the ¢-binomial theorem,

Ad)=(X+bZ+T)"+Y"

and it remains to compute (X + bZ + T)". Straightforward computation yields
that

XZ=¢*2X and ZT =¢°TZ

and we illustrate the type of calculation involved by computing X7T. We have

XT=(1-q¢"(1 -7 (0195 ®d)(a391 ® a1)
=(1 =g ") (1 — ¢7)bTyb3sa50795 ® day
=(1—q "1 — ¢7)blb520397 95 © (b3,b32a1d + by1bas(gq — 1)c?)
=(1-¢""(1 - ¢7?)(¢*a3g}95 ® ard + (g — 1)b12¢°a3g3i95 @ ).

Since Z2 = byoqa2g?92 ® c?, we have
(12) XT=¢"TX +(1-¢*)(1—-q ")(g-1)g*2%
Using Theorem A.1 in the Appendix, we see that
(X+bZ+TY'=X"+v(n)Z"+T"

and, by Corollary A.5, v(n) = o™ + 8" where a = ¢ — 1,8 = 1 — g~ ! are the
solutions of the equation Y2 —¢(1—¢~2)Y +(1—¢~3)(1-¢"1)(¢—1)¢?*/(¢*~1) = 0.
Thus v(n) = (g = )" + (1 — ¢~ 1) = 2(¢ — 1)" and we have
Ad™) =(9199)" ® d" +d" @1+ 2(g — 1) (a20192)" ® "
+(¢* = 1)"(g - D™(a39))" ® a}
=(9193)" ®d" +d" @ 1+2(q — 1)"agie5 © "
+(¢* =~ 1)*(g - D"a3"g} ®af,
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where (a29192)" (b22b12)"(" D/2g2gngn and 67" /% = 1if al # 0 by Remark
2.2. Similarly (a2g))" = a2"g}. Let

(13) w=d" +2(q — 1)"uac” + (¢* — 1)"*(g - 1)"p3a}
and then

Aw) =(g193)" @ d" +d" © 1+ 2(q — 1)"p2(g5 — 1)(g192)" @ "
+(@® - 1" (g - 1)"p3(g5 — 1)’g} ® a}
+2{g— 1) u2gT s @™+ 2{(g — 1) pac® @1
+2(g - 1)"pi(g® — V™95 — 19} ®af
+(@* - D™ - D"} @1+ (¢* — 1) (g - 1)"#39’1’ ®a}
=(193)" @ [d" + 2(g — )" pac™ + (¢° — 1)"(g — 1)" a}]
+[d" +2(qg — 1) pac™ + (¢ — 1) (g — )" 2(11]®1
—2(q = 1)"p2gi g5 @ " + (¢* = )™(g — 1)"p3(~295 + 1)g7 ® af
+2(g — 1)"p2(g192)" @ " +2(g — 1)(¢* = 1)"u3(¢7) (g5 — 1) ® af
+(¢® = 1)"(g — )" p3e} ®a}
=(g12)"Quwtwel.

Thus w is ((g192)", 1)-primitive and so, by Lemma 2.1 (3), we have
(14)  w=d"+2(¢— 1) uac” +(¢* - 1)* (¢ — )" p3a] = 1((9193)" — 1)

where v = 0 if (x1x3)" # € or (g193)" = 1.
Remark 2.4: If b3, # 1, then v = 0. Indeed, (x1x3)"(g2) = b3 # 1, so
(x1x3)" # €, forcing vy = 0.

We find a characterization for the liftings of Nichols algebras of type Bj similar
to that in [6] for type As. The following lemma from [6] will be useful.

LEMMA 2.5 ([6, Lemma 3.4 (i)]): Let X,Y,Z be elements in a k-algebra, o, 8
scalars in k and n a natural number. If YX =aXY + 7 and ZX = 38X Z, then

n—1
YX" =a" XY + (Z(aiﬁn—l—i)xn—lz

=0

and, if a # B and o™ = ", then for n > 1,

YX" =" X"Y. ]
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Define a Hopf algebra U™ in the category \ YD by Ut 1=k < 1,22, 2, u|NV >,
where A is the set of the first six relations defined at the beginning of this section,

namely:

(15) 2 =Xy — bo1T129,

(16) U =22 — bayboszs,

(17) r1z =b12221,

(18) zou =byrbl,uzg,

(10) uz =by ba; 2,

(20) r1u =by byuxy + by (bgy — 1)22,

and the comultiplication, action and coaction are defined such that x;,z, are
primitive and h-x; = x;(h)x;, 0(x;) = g; ® x;. To see that Ut is well defined, we
note that if we make the free algebra F' generated by z, and x5 into a braided
Hopf algebra with z; and x5 primitives, then Ap(AN) CN ® F + F @ N, and
this induces a braided Hopf algebra structure on Ut. U7T has a PBW basis
{ziwiz"x5| 1, j,7,s > 0}. This follows from the fact that U can be constructed
from k[z,] by adjoining z, u, x4 by iterated Ore extensions defined by the relations
(15)-(20).
We define U to be the Radford biproduct Ut #kT.

THEOREM 2.6: Let py, po € {0,1} and A,y € k such that

(21) pwi=0 ifgl=1lorx#e¢
(22) A=0 ifgigy =1orxTx3 #e€
(23) v=0 if (x1x3)" # € or (g193)" = 1.

Then the two-sided ideal J of U generated by the elements

yo = —pilgl — 1), 1=1,2;
vi= 2"+ pa(q — D)™zt — Mglgh — 1);
wi=u" +2(g — 1) 2" + (¢* - 1)"(q — )" 3z} — v((g193)" - 1),
is a Hopf ideal of U. Moreover, A = A(T',V, (u;)s, A,y) = U/J is a pointed Hopf

algebra of dimension n*|T| with coradical kT, and gr(A) ~ B(V)#kI", where V
is our fixed Yetter-Drinfeld module of type Bs.

Proof:  Since, by the arguments preceding (9), (11) and (14), J is generated by
skew-primitive elements, J is a Hopf ideal. Next we verify some commutation
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relations. We have

r2a7 =b}2%xs by Lemma 2.5 with Y = 29, X = 71,2 = z,a = bay, B = by b3;
zxy =by 2Tz by (17);
ux =(x22 — barboozae)x} = (b3;) 2T u;
zay =blyxhz by Lemma 2.5 with ¥ = 2, X = 29, Z = u, a = biabaa, B = b1g;
uz} =bjpau by (18);
x12" =bTy2"xy by (17);
T9z™ =by 2" x2 by Lemma 2.5 with Y = 22, X = 2, Z = u,a = baybag,
B = biibar;
=by, 2" u by (19);
c1u” =b23u"z; by Lemma 2.5 with Y = 24, X = u, Z = 2%, a = b}yb3,, B = b2y;
zau™ =b%,u"x9 by (18);
zu" =bjyu"z by (19).
It remains to find the commutation between x, and z%.
Now 2127 = biabda(2ozy — 2)25 ", and
t—1
zxh = (bigbgy)txbz — b, an baoxt tu
=0

by Lemma 2.5.
Thus

.’L'l.’l,‘g = b12b321'21‘11'g—1 - (b12b§2)(b12b22)n—1$g—12
+ (byab2 )b me boph 2w,
Then
2123 = (byob3,)"ahxy 4+ ax) 'z + B2

and we show that a = 8 =0.

It is easy to see that

n
12 Z b3sbos "t = —bl Z by, =0,
i=1
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and that
n—2 ) n—3 ] n—4 ) 2(n—2)
B =b7112b32{ Z by + by Z by + b Z bhg + -+ 4 byy" (1)}
i=0 i=0 i=0

=t {(@" ' - 1)+ * (@ -1+ + (- 1D}/ (g - 1)

Now the expression in brackets is just

(qn—l +q2qn—2 +q4qn—3 4. +q2n—3) _ (1 T+ q2 + q4 4 +q2(n—-2))
= (¢" ' - 1)/(g-1) - (V- 1)/(* - 1),

and putting these expressions over a common denominator, we see that this is 0
and so 3 =0.
We have proved that
r1zy = bloxhxy.

We show now that J is the right ideal generated by y;, i = 1,2; v; w.
Assume first that b7y = 1. Then for h € I' and ¢ = 1, 2, we have

hyi = X3 (Ryah + (G (R) — Dpalgi® — 1A
and, by (21), we always have (x?(h) — 1)pu; = 0. Also

Toy1 = y1x2 and Ty = Y17

Similar computation for the other generators shows that J is the right ideal as
well as the two-sided ideal generated by y1, y2, v, w.

If b}, # 1, then by Remarks 2.2, 2.3 and 2.4, we must have p; = pp = A=v=0
and then J is the two-sided ideal generated by 7, 2%, 2™, ©". The commutation
relations show immediately that J is the right ideal generated by these elements.

We prove now that no non-zero linear combination of the elements griu’ 2"z,
withgeTI,0<14,j,r,s<n-1,lies in J. This will imply that the dimension of
A =U/J is n* and also that J N kT = 0, so kT embeds in A. To show this we
proceed as in the proof of [8, Proposition 1.10]. Assume that

L W
Z Qg,i,j,r,s9Tot’ 2" T} = E vifitvfstwfy
gvivjyrys ’L=1,2

for some fy, fa, f3, f4 € U and some scalars ag; j s not all equal to zero. The
commutation relations show that U is a free module with basis

{27230 < 4, 4,r s <n—1}
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over the subalgebra B of U generated by I' and zT, 5, 2", u". If we write f;,
1 <7 < 4 in terms of this basis, we see that there exist some Fy, Fy, F3,Fy € B
such that

> yiFi+vF3+ wF, € kT' - {0}.

i=1,2
Clearly B is isomorphic as an algebra to an Ore extension R obtained from kI’
by adjoining the indeterminates Y, Y3, Yy, Y; (identified with z3, u”, 2", z}) in
that order via Ore extensions with zero derivations. This shows that the relation

Z (Yi — pi(98 —1))as + (Yo + pa(g — 1)"Y1 — MoTgy — 1))ga

i=1,2
+(Y3 +2(q - 1)"uaYa + (¢ = D™(g — 1) u3Y1 — v((9193)" — 1))q4 € kT — {0}

holds in R for some ¢;,1 < i < 4. The universal property for Ore extensions
(see [8, Lemma 1.1]) shows that there exists an algebra morphism 6: R — kI’
acting as identity on I' and such that 8(Y;) = p; (g7 — 1) for 1 <i < 2, 8(Ys) =
—mp2(g — )™ (g7 — 1) + A(g795 — 1), and

6(Y3) = — 2(g — 1)"pa{~p1pa(q — )" (g7 — 1) + Mgigs — 1))
— (@ = D)™(g— )" papd(g? — 1) + v((q193)" — 1).

Then applying 6 to the above equation we obtain that 0 € k" — {0}, a contra-
diction.

We have thus proved that the dimension of A is n*|I'| and that k' embeds in
A. Since A is generated by I' and the skew-primitive elements x,, x3, we see that
A is pointed and the coradical of 4 is kT

For the last claim, we consider the algebra morphism ¢: U — gr(A) which takes
x; to the image of x; modulo kT" in the homogeneous component of degree 1 of
gr(A). Since A is generated as an algebra by T and z1, 22, this algebra morphism
is surjective. On the other hand, since z} € kI" in A, we have that z7 = 0 in
gr(A). Similarly, regarding the images of z, respectively u, in gr(A), they have
degrees 2, respectively 3, and we also get that z” = 0 and " = 0 in gr(A).
Therefore ¢ induces a surjective algebra morphism ¥ from U/(z}, 2%, 2", u™) ~
B(V)#kT to gr(A), and this morphism must be an isomorphism because of the
dimensions. Obviously % is also a coalgebra morphism, and this ends the proof.
]

THEOREM 2.7: Let A be a pointed Hopf algebra with coradical kI and such that
gr(A) ~ B(V)#kL, where V is our fixed Yetter-Drinfeld module of type B3, such
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that n is odd and n # 5. Then A ~ A(T,V, (i;)i, A, 7y) for some g;, xi, fti, A,y as
in Theorem 2.6.

Proof: Suppose first that n # 3. We have shown that relations (4), (6), (7), (8)
hold in A, so there exists a Hopf algebra morphism ¢: A(T,V, (u;)i, A,y) = A
which takes x; to a; for i = 1,2. By [4, Lemma 2.2] we have that A is generated
as an algebra by I'; a; and a9, so ¢ is surjective. The dimension implies now that
¢ is an isomorphism.

Now suppose that n = 3; in this case relation (6) has not been verified. Since
n # 5, by the proof of Lemma 2.1 (5), x1x3 # ¢, so that dag — bj2asd € P;llg)ég
means 195 = g; and x1x5 = x; for i=1 or 2. If i = 2, then the argument is the
same as in Lemma 2.1. If i = 1, then g5 = 1 and x3 = ¢. But then a3 = 0 by
(9) and thus a3 — a1 = 0 = az — d = agd — by b3,das. Relation (6) follows from
(1). |

3. Quasi-isomorphism of liftings

Recall that Hopf algebras A and B are quasi-isomorphic if one is a cocycle twist
of the other and this implies that their categories of comodules are monoidally
Morita—Takeuchi equivalent (see [12] or [17]). If one of A or B is pointed or finite
dimensional, then the converse holds. If A and B are quasi-isomorphic, we write
A~ B.

As well as the infinite families of nonisomorphic Hopf algebras of the same
dimension obtained by lifting quantum linear spaces that were mentioned in the
introduction, such infinite families can also be easily constructed from liftings of
B(V)#kT, where V € ¥LYD is of type A; or B,. Recall that V of type A; means
that V = kz; ® kx2 and there exist gy,92 € I' and x1,x2 € I" such that for all
g€l and ¢ = 1,2, we have

g— ;= xi(g)xi and (5(1‘,) = g; & x;.
Also for b;; = x;(g;) as in Section 2,

(24) bi12b21b1) = 1 = ba1b12baa, b1y = bag =g,

where ¢ is a primitive nth root of unity,

so that the Cartan matrix A determined from the braiding matrix B = (b;;) is

A:(i ?).
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The liftings of B(V)#k[ where V € ¥LYD is of type A, were determined in [6]
where n > 3 or I is cyclic of order 3.

For 1,z as above, a Hopf algebra Ut € ',g;yD is defined in {6, Definition 3.5]
by

Ut =k < x1,2,%2|2 = 2123 — byaxamy, 271 = ba112, T2z = boy2mwy >,

where the z; are primitive elements. Then U is defined to be the Radford
biproduct U+ #kT.

THEOREM 3.1 ([6, Theorems 3.6 and 3.7]): Let A be a lifting of B(V)#kT for
V of type A; as described above. If n is an odd integer greater than 3 or if ' is
cyclic of order 3, then A= U/J, where J is the Hopf ideal of U generated by the
skew-primitives

a7 — pi(g; —1) where p; € {0,1} and p; =0 if g7 =1 or X7 # ¢,
2"+ pi{g—1)"zh — MgTgs —1) where A\=01ifglg; =1 or xTx5 # €.
Example 3.2 (cf. [6, Section 3]): Let I' =< g > be cyclic of order 49. Let ¢

be a primitive 7-th root of unity. Let x € I' be defined by x(g) = gq. Define
91=9,92=g" x1 =X, x2 = x> Let V = ka1 @ kzy where ; € V5. Then the

matrix )
B:[bll b12]=[q q }
bar b2z ¢ ¢®=q
. .2 -1 .
and the Cartan matrix A is _1 o |%° V is of type A,.
Let A(X) be the Hopf algebra

U/ <] —(1-g"),e]— (1= (g97),2" = (¢=1)"(1 = (98)") = A1 = (99")") >
as in Theorem 3.1.

For A # w, A(\) ¥ A(w). For suppose f: A(\) = A(w) is a Hopf algebra
isomorphism. Then f(g) = g since, if f(g) = g%, then f(g?) = ¢'® # ¢g. Thus
f(x1) = oy +6(1 —g7), where y; is the counterpart of z; in A(w). Commutation
with g shows that § = 0 and o” = 1. Similarly, f(z2) = By. where 87 = 1. Then
f(2) = aB(y1y2 — br2y2y1) = afw and

(@B)w =w = (g—1)"(1 - ¢®) = A1 - ¢%) = (¢ — 1)"(1 - ¢*°) —w(1 - ¢*),
S0 A = w. [ ]

We now describe the liftings for the remaining case n = 3. Let U+ be the free
algebra in the indeterminates z; and xo. This is a Hopf algebra in the category
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’,ngD by taking the z;’s to be primitive elements where §(z;) = ¢; ® =; and
h — z; = x;(h)x; for all h € T'. Denote z = x1x2 — qrar,. We define U as the
Radford biproduct Ut #kT.

PROPOSITION 3.3: Suppose V € ¥LYD is of type A3 and n = 3. Then any lifting
of B(V)#kI is isomorphic to U/J where U is as defined above and J is the Hopf
ideal of U generated by:

x3 — pi(g? — 1) where p; € {0,1} and p; = 0 if g2 = 1 or x? # ¢;
—dwiz=7(9ig; - 1), ie€{l,2hi# ) vi=0ifglg;=1orxix; #¢
2+ g = 1% + (1 - 9n(zze — ¢°222) — Mgigs — 1)
where A = 0 if g5g5 = 1 or x3x3 # €.
Proof: Let A be a lifting of B(V)#kT. Let a; € A be the lifting of z; € V as in
the B, case and as in [6], @} = p;(g7 — 1) where p; € {0,1} and p; =0 if g} =1
or x} # e Forc= a1az — biz2a2a, as in [6], then it is shown in [3, Lemma 3.1]
2
that cay — bo1aic € PXIX2 and agc — byjcas € PXIX2 If x2x; # € for 4,5 € {1,2},
2
or if T is cyclic of order 3, then we are in the situation of Theorem 3.1. But
for n = 3 and I" not cyclic of order 3, we could have x? X; = € then the matrix

B = (b;) = (g Z) with ¢ = 1. From now on, we assume this is the case.
Then

(25) cai — g'aic = 7:(g7g; — 1)
for some v; € k with v; = 0 if g2g; = 1 or x?x; # €.

Now as in the calculation of (3), we have
Al =g1g2®c+c@1+(1-¢Darga®az =X +Y + (1 - ¢*)Z.
Then we have the following commutation relations:

XY =qY X;

XZ =qZX + 72¢*T where T = a;9:92 @ (9192 — 1);

YZ =¢’ZY + 1S where S = (929, — 1)g2 ® ag;

XT =¢°TX;

ZT =qT Z,;

YT =qTY + W  where W = (9ig2 — 1)g193 ® (9195 — 1);
XS =¢*SX + 7, W;
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YS =¢SY;
ZS =¢*SZ;
TS =¢>ST.

Direct computation shows that

AS)=(X+Y+(1-¢H)2)3
=(g192)* ® S + @1+ (¢ — 1)°algl ® a3
+ (1 — ¢)11729195 (9792 — 1) ® (g195 — 1).
Let v =c® + p(g ~ 1)°a3 + (1 — ¢)m172(9195 — 1). Then

A) =(g1g2)’ @+ @1+ (¢ - 1wl — 1)g3 ® a}

+ (1 - n129195(9792 — 1) © (9195 — 1) + (g — 1)°a3 ® 1
+mlg -1’63 0a+ (1-gmrn(ng -1 o1
+ (1~ 9)71729193 ® (9193 — 1)

=(0192)° ® [® + (g — 1)*m1a3 + (1 — @)117v2(0193 — 1))
+[ + mlg— 1%+ (1 - g9mra(ags - D] @1
~pi(g-1)%g3 ®a3 — (1 — Pny20195 ® (195 — 1)
+u1(g — 1’03 ® a3 + (1 — @)n1720195 ® (193 — 1)

=(g192)° @v+v®1,

3.3
and thus v € Pg’%};ff. If x3x3 # ¢, then x3x3 = x4 for i = 1,2, yielding ¢ = 1,
192
which is a contradiction. Therefore, v = A(gig3 — 1) for some A € k. Now an
argument similar to the one in Theorem 2.6 shows that the elements hajc’a¥,

hel,0<14,7,l,k <2 are a basis for A, and the same argument as in Theorem
2.7 completes the proof. ]

Let A(T, V, u1, 2, A, 71, v2) denote the Hopf algebra U/ J, where U is the Hopf

algebra defined just before Proposition 3.3 and J is the Hopf ideal generated by
the skew primitives:

P —pi(gf —1) whereie {1,2},p; € {0,1} and p; =0if gf =1 or x7 # €
zxy — bz —11(giga — 1), 11 =0if giga=1or X3x2 # €
2wz — by'waz — 12(g301 — 1), 1 =0ifgigi=1or xjx1 # &
2 + (g = 1)z + (L — g)mi(ezz — by)'@e2) — Mgigs — 1)
where A = 0if gTg3 =1 or x7x3 # ¢
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Then by Theorem 3.1 and Proposition 3.3, all liftings of Nichols algebras of type
Aj are of this form. Now we show that all A(T',V, p1, 2, A, v1,y2) with the same
v; are quasi-isomorphic. We write H ~ H' if the Hopf algebras H and H' are
quasi-isomorphic. We use the key theorem from [12] together with comments
from [13].

Recall that for K a Hopf algebra, the set Alg(K, k) is a group under the
convolution product with the inverse to ¥ € Alg(K, k) being given by o S
where S is the antipode of K. The left action of Alg(K, k) on K is given by
Yz = (Idg ® ¥)A(x) and the right action by z¢ = (¢ ® ldk)A(x). Two Hopf
ideals I, J in a Hopf algebra K are said to be conjugate if there is an algebra
map ¢ from K to k such that J = ¢Ivy~1. Also, if K is a subHopf algebra of a
Hopf algebra H and J is a Hopf ideal of K, then (J) will denote the Hopf ideal
in H generated by J.

THEOREM 3.4 ([12, Theorem 2|, [13]): Suppose that K is a Hopf subalgebra of
a Hopf algebra H. Let I,J be Hopf ideals of K. If there is an algebra map 1
from K to k such that J = Iy~ and H/(yI) is nonzero, then H/(yI) is an
(H/(I),H/(J))-biGalois object and so the quotient Hopf algebras H/(I), H/(J)
by the Hopfideals (I), (J) in H generated by I, J are monoidally Morita-Takeuchi
equivalent.

In the application of Masuoka’s theorem, the following lemma will be useful.

LeMMA 3.5: Let K be a Hopf algebra containing (¢;, 1)-primitives z;,1 = 1,...,t.
Let J be the Hopf ideal of K generated by the x; and let L be the Hopf ideal
generated by x; — Aj(g; — 1),i=1,...,t. Let 1 be an algebra map from K to k
such that ¥ (x;) = A\; and (k) = 1 for h grouplike. Then J and L are conjugate
ideals in K.

Proof: Since S(x;) = —g; 'xs,%(S(x;)) = — ;. Thus
e = (YRIARY ™) (A%:) = ¥(g:)gi(—N)+¥(g)zi+¥(xs) = 7~ Ni(gi—1),
and ¢~ 1Jy = L. [ |

THEOREM 3.6: For V of type Ay, and A = A(T,V, p1, pi2, A, 71,72) a lifting of
B(V)#kT, then A is quasi-isomorphic to any other lifting

A(F,V, ullvul2v)‘,,717 72)‘
If vy =0 then A ~ A(T, V, p', p5, N',0,~5) and if vo = 0O then
A~ A(F7 vaﬂ,lv H’z; /\;a ’Yi, O)
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In particular, if n > 3 or I' is cyclic of order 3, then all liftings of B(V)#k[" are
quasi-isomorphic.

Proof:  First note that if b7; # 1, for ¢ # j, then for n > 3 by an argument

similar to Remark 2.2, b7; # 1 and the only possible lifting is the trivial one,

A(T,V,0,0,0,0,0). For n = 3 this follows from the proof of Proposition 3.3.
Now assume b, = b7, = 1. Since n is odd, then also b3" "/

show that for a given v, vs, 1, AT, V, 41,0,0, 71, v2) and

A=A, V, py, g2, A v, ¥2)

= 1. First, we

are quasi-isomorphic for any ps € {0,1} and any A.

Let M, =U/ < 27— p1(g7 — 1), 221 —barz12—71(9192— 1), 222 —brabogzoz —
v2(g19% — 1) > where U is the Hopf algebra defined just before Proposition 3.3.
Note that v = 2™ + p1(g — 1)"x% + (1 — ¢)1172(919% — 1) is (g7¢3,1)-primitive
in M. If 73 = 72 = 0, this follows from the proof of Theorem 3.1 [6, Theorem
3.6], and if some +y; # 0, then we are in the situation of Proposition 3.3. We note
that A(T, V, g1, p2, A 1, 72) = My, / < o — pa(g3 — 1),v — Aglgz — 1) >.

Since M, is obtained by adjoining x1, z and x, via Ore extensions to kI" and
then factoring by a Hopf ideal, then we may let K be the Hopf subalgebra of
M, generated by I, the subgroup of I' generated by g, and go, and by z% and
2", i.e., by g1, 92, 2% and v. Since b?j = 1, the g; commute with =% and z". Also
2" and z§ commute. For, if 7, = 0, then 32 = bs1222 and, since b3; = 1, the
commutation is clear. If 5 # 0, then n = 3, and the commutation of x3 and 23
follows from Lemma 2.5 with Y = 2, X = 13,0 = ¢%,Z = v2(gq19% — 1),8 = L.
Thus the Hopf algebra K is a commutative polynomial algebra over kI in the
indeterminates z% and z".

Now let 1: K — k be the algebra map defined by ¥(g1) = ¥(g2) = 1, ¥(2}) =
po and (v) = A. Then ¢~!(2}) = —p2 and ¢ ~!(v) = —A. By Lemma 3.5, the
ideal J generated by the skew-primitives % and v and the ideal I generated by
the skew-primitives 25 — pu2(g% —1) and v — A(g}g5 — 1) are conjugate in K. Also
(¥J) # M, since (1J) is the Hopf ideal generated by z3 + p2g3 and v+ Agig3.
Thus M, /(J) = AT, V,$1,0,0,7,7) and M, /(I) = A(T,V, K1, 2, Ay Y1, Y2)
are quasi-isomorphic.

Next, let

M = U/ < JJEL, z2x, — bo1x12 — 71(9%92 - l), 2&y — bigbaoxaz — ')/2(g1g§ — 1) >.

Then M/ < z¢,v > A(T,V,0,0,0,71,72) and M/ < 2} — (¢ — 1),v >=
A(T,V,1,0,0, 71, v2) and showing that J =< zF,v > and I =< 27— (g7 —1),v

\%
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are conjugate Hopf ideals in some Hopf subalgebra of M will complete the proof.
Let K be the Hopf subalgebra of M generated by g¢1,g2,2z7 and 2". Again, g;
and g2 commute with 27 and 2™ and if y; = 0, then 2z1 = bo1x12 in M, so that
x} and 2" commute. If 7; # 0, then the commutation of 23 and 2 again follows
from Lemma 2.5. Define an algebra map ¢: K — k by ¢(g1) = ¢(g2) = 1 for
heTl, p(z}) =1, ¢(v) = 0. Then Lemma 3.5 again yields that J and I are
conjugate in K and so A(T',V, u1, pa, A, 71, 7v2) ~ AT, V,0,0,0,v1,7v2). If n > 3
or I is cyclic of order 3, then v = v = 0, and all liftings of B(V)#kI are
quasi-isomorphic.

Assume now that n = 3 and that we are in the situation of Proposition 3.3
with x?x2 = v1x% = €. Let L =U/ < x3,23, 221 — qz12,2° >, and let K be the
commutative subHopf algebra of L generated by g¢1,g2 and the skew-primitive
29 — q*x92. Define an algebra map ¢: K — k by ¢(g1) = ¢(g2) = 1 and
@(2x9 — g%x22) = 2. Then as above, the Hopf ideals J generated by zx5 — ¢%x22
and I generated by zzs — ¢2x22 — v2(g192 — 1) are conjugate in S and so L/(J)
and L/(I) are quasi-isomorphic, i.e., A(I',V,0,0,0,0,0) ~ A(T,V,0,0,0,0, 7).
Similarly, A(T,V,0,0,0,0,0) ~ A(T,V,0,0,0,7,,0). &

QUESTION: For n = 3 and 71, 2 nonzero, is

A(T,V,0,0,0, 71, 72) ~ A(T, V,0,0,0,0,0)?

Added in proof: A. Masuoka has answered this question in the affirmative. His
method of proof is very much in the style of the proofs in [12].

Now we consider the case where V is of type Bo and n # 5. f A= U/J is

the lifting determined by the scalars pq, 2, A, v as in Theorem 2.6, then we write
"4__ A(Fﬂ Vv M1, [2, /\’ 7)‘

THEOREM 3.7: ForV € ¥LYD of type By and n # 5, any two liftings of B(V)#k'
are quasi-isomorphic.

Proof: As in the proof of Theorem 3.6, if bi; # 1, then only the lifting
A(T', V,0,0,0,0) is possible. Therefore we assume that b}, = b3, = 1.

We first show that A(T,V,0, ug,0,0) ~ A(T,V, uy, p2, A,7) for fixed us and
any p1,A,y. Let M(p2) = U/ < 2% — pa(g% — 1) >, where U is defined just
before Theorem 2.6.

Recall that v, w defined in Section 2, equations (10), (13), are skew-primitives,
as is «7. We write z7', v, w also for the images of these elements in M (us) and
note that they are still skew-primitive.
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Now let K be the Hopf subalgebra of M (us3) generated by by g1, go, 27, 27
and u". As in the proof of Theorem 3.6, as an algebra K is a commutative
polynomial algebra over KT' where I is generated by g1, ga.

Let 1 be the k-linear map from K to k defined by ©¥(g1) = ¥(g2) = 1, ¥(2}) =
u1, Y(v) = A, ¥(w) = . Then ¢ defines an algebra map from K to k. In K, let J
be the Hopf ideal generated by 7, v and w and let L be the Hopf ideal generated
by the skew-primitives 27 — 1 (g7 — 1),v — M(gTg% — 1) and w — y(gTg?" - 1).

Then by Lemma 3.5, J and L are conjugate in K and, by [12],

A(F7 V,O, k2, 07 0) = M(/—L2)/(J) ~ M(ﬂ?)/(L) &= A(Fa V7 £, H2, /\7 7)
Finally, we show that A(T",V,0,0,0,0) ~ A(T',V,0,1,0,0). Let
M=U/ <=z} >,

let K be the commutative Hopf subalgebra of M generated by g1, g2, 2%, 2" and
u™, let ¥: K — k be the algebra map defined by ¥(g;) = 1 = ¢(2%),9¥(v) =
¥{w) = 0. Now the same argument finishes the proof. 1

4. A generalization of the ¢-binomial theorem

BY
M. BEATTIE, S. DASCALESCU, S. RAIANU AND I. RUTHERFORD*
Throughout, we work over a field k, not necessarily algebraically closed.

From Theorem 1.1 (i), it is straightforward to prove that
(26)

(7,00,7 (20),620),+(0),6), 7 (20).(5),

Now we prove the generalized quantum binomial theorem used in the calcula-
tions in this paper. However, this theorem is interesting in its own right.

THEOREM A.1: Suppose that ¢ € k* and X\ € k and, for x,t, z in some k-algebra,
we have the following relations:

(27) zz = qzx; ot =gtz xt = gte + Azt

* Tan Rutherford was supported by an NSERC Undergraduate Student Research
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Then
(I+b7+t)n ZE() () Z_])J1]xn1
=0 j=0 q
where v = v, is a function from N to k defined recursively by v(0) = 1,v(1) = b,
and v(n) = bv(n — 1) + A(n — 1)qv(n — 2), forn > 2.

Proof: The proof is by induction. The formula can easily be checked for n = 1, 2.
Now assume that the formula holds for n = k, and we show that it is valid for
n = k+ 1. First we note that it follows directly from Lemma 2.5 or from a simple
induction argument that

(28) ot" = ¢"t"r + A" (n) 2R
Then we compute

(x+bz+ ) =(x + bz +t)(x + bz + 1)k

_ZZ( ) () (i — gz +bz+ )tz Ikt

i=0 j=0

-ZZ( ) () V(i (@82 + Mg ()12
i=0 j=0 q
_+_q]bt]:1—]+l k—1 + tj+lzi—j$k—i) by (28)

—ZZ() (.)qu(z—a)( ()i b

1=0 j=0
+q t]zz—]Ik+l—t + qutjzi—j+ll.k—i + tj+lzi_j1?k_i).

Nowlet i =i+ 1,5/=3j -1, =35+ 1 and then

k+1 =2 ,
1 y
(@+bz+)k =3 ) (z’—l) (J +1) v(i' — ' = 2)A¢7 (§' + 1),

i'=1j5'=~1
NETR .
x ¢4 2t I .’lfk+1 %

+ii<k>q(.>q (i — j)qiti i ght1—1

1=0 j=0

k+1i'—1 -1
+ Z Z ( ) ( . ) v(i' —j — 1)gibt 2t ~ighti-t
i'=13=0 J q
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and then, using the fact that (T)q =0if s >m or s <0 and (0), = 0, we have
that

(x + bz + t)k+!
=k§2 (i f 1)q(i ; 1)q%1;)iv(i = = 2AF(J + 1)gt? AT gh 1t

+ % zl: <’;>q (z..)qu(i - j)qitjzi_jx“l"i

) (Z B 1) V(i — j — 1)g/bti 21T gh+1-7
q q

S5 (o) s
=§Z((zf )q(z ; 1)q(bV(i—j — 1)+ Wi —j—2)(i—j — 1)g)¢

+ ’:)q (;)qu(i - g+ (2 f 1)q (; B qu(i — ) i gk
(:£1),G70),#¢(),0),+(:5).(5)))

X (i — )t i gkt

—

by the definition of v
k+1 ¢

k+1 i
_ZZ< + ) (l) V(i — j) IR =1 by (26), as required. B
q

i=0 j=0

Remarks A.2: (i) If A = 0, then (z+bz +t)" = ((x +bz)+1t)" where (x+bz)t =
gt(z + bz), and so the same result may be obtained directly from the ¢g-binomial
theorem (Theorem 1.1(ii)).

(ii) Suppose ¢ is a primitive nth root of unity. Then ('Z)q =0 unless i = 0 or
i = n, and the formula in Theorem A.1 becomes (z+bz+1t)" = ™ +vp A (n)2" +t".

The description of (z + bz + t)" would now be complete if we had a general
formula for v, »(s).
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PROPOSITION A.3: If¢g=1 and b # 0 then, for n > 0,
n/2

2000 g
I/(n)=§<;>§(z—(z)‘—)b 2N

Proof: Note that since (;) = 0 if 2i > n, the summation is from 0 to |n/2].
First, if n = 0, we check that (8)53&1)0)\0 =1 and, if n = 1, the formula gives
(3) 755:b' = b. Now suppose the formula holds for n < k + 1 and we compute
v(k+2) = bv(k + 1) + (k + 1)Av(k). By the induction assumption, this is

(k‘g:)ﬂ kE+1 (22)'bk+2 21/\2_{_% k (k+1) 29
i=0 20 ) 2¢(i) e
k+2)/2

(k+2)/ (k+1>( D! phr2-2iyi
cr 2i ) 2i(3!)

(k+2)/2

k (20 =20 a0 4
+ ;:6 (22" - 2) R (GBS A

where i/ =i+1

G2 by @) (k+1)  (2i—1) i
= Z (( 24 >m+(2i—1)21‘7((,’_—1)5)bk+2 2y

=0
(k+2)/2

— Z k+2 (22) n+2 21.)‘1 2
= 2 ) 2l

If ¢ # 1, there is a formula for the computation of v(n) in terms of o, 8 («, 8
possibly lie in some extension field of k) where a + 8 =b and a8 = A/(g — 1).

PROPOSITION A.4: Suppose that ¢ # 1. Let a, 8 be the roots of the polynomial
—bY 4+ A/(q — 1) in some extension field k of k. Then

vpa(n) = i (’:) qﬂian—".

i=0
Proof: Since x + bz +1¢ = (x + az) + (82 + t), and since (z + a2)(8z +t) =
g(Bz + t)(x + az), we have by the ¢g-hinomial theorem (Theorem 1.1) that

n

(x+bz+8)" = Z (?) (Bz +t)i(x + az)" "
q

i=0

% (.5 0) oG (1) oren

i=0 q9 j=0
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Comparing terms in this formula with the one in Theorem A.1, we see that

i <::l>ql,(m)zmxn—m = Xn: S (?)q (n ,: Z) (Bz)(az)fzn—ik

-2 (1), (070) g

Comparing coefficients of z™z™~™, we obtain

() =25 (), (n 25 o

and then, letting m = n, we obtain the statement. 1
COROLLARY A.5: If ¢ is a primitive nth root of unity, and n > 1, then
vin)=ao"+p" k.

If =0, then v(1) = b = 0, and since v(2n + 1) = bv(2n) + A(2n)v(2n — 1),
it is clear that v(2n +1) = 0 for n > 0. However, v(0) = 1,v(2) = A(1),,
v(4) = A%(3),, and, in general, ¥(2n) = A"(2n — 1)4(2n — 3)4 - - - (1),

COROLLARY A.6 (to Theorem A.1): For z,z,t,q, A satisfying (27),

(x+t)" = iz ( ) ( m)qz/(2m)ti“2m22mx”_i.

1=0 m=0
Proof: Applying Theorem A.1 with b = 0, we have

(x +t)" ?:6;)( ) ()q v(i — I gnt
iz( ) ( i k)qu(k)ti—kzkxn—i

1=0 k=0
n 3]

(n) ( i2 )V(Qm)ti_szme”‘i. ]
im0m=0 \"/ g\t T M/ g

Remark A.7: Suppose x,t, s are such that

s = q2sa:, st = q2ts and xt = gtx + As,

i.e., the relations (27) hold with s = 22. Then if ¢ is a primitive nth root of unity
and m is odd, {z + )" = 2" +{".
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