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well, we compute the liftings of a Nichols algebra of Cartan type A2 if 
the diagonal elements of the braiding matrix are cube roots of 1; this 

case was not completely covered in previous work of Andruskiewitsch 
and Schneider. We study the problem of when the liftings of a given 

Nichols algebra are quasi-isomorphic. The Appendix (with I. Rutherford) 

contains a generalization of the quantum binomial formula. This formula 
was used in the computation of liftings of type B2 but is also of interest 

independent of these results. 

1. Introduction and preliminaries 

Let k be an algebraically closed field of characteristic zero. Several classification 

results for finite dimensional pointed Hopf algebras have been obtained in recent 

years (see [1] for a survey). The most powerful general method for classifying such 

Hopf algebras is the lifting method developed by N. Andruskiewitsch and H.-J. 

Schneider. If A is a finite dimensional pointed Hopf algebra with coradical kF, F 

a group, then there exists a Hopf algebra projection from gr(A), the associated 

graded Hopf algebra, to kF, and this projection splits the inclusion of kF in 

gr(A) as the degree 0 component. Then the subalgebra R of kF-coinvariants 

of gr(A), called the diagram of A, has a Hopf algebra structure in the braided 

krY~ of Yetter-Drinfeld modules over kF. One can also associate to A category kr 

the Yetter Drinfeld module V of primitive elements of R, called the infinitesimal 

braiding of A. The Hopf algebra gr(A) can be reconstructed by bosonization 
from R, i.e., gr(A) ~- R#kF, the biproduct in the sense of D. Radford or S. 

Majid. The lifting procedure consists first in finding all the possible diagrams R, 

then bosonizing to gr(A), and finally lifting the information (i.e., presentation 

by generators and relations) from gr(A) to A. 

Assume that F is a fixed finite abelian group. If V is a Yetter-Drinfeld module, 

the Nichols algebra B(V) is a graded Hopf algebra in the category kr krY:D with kl 

as the homogeneous component of degree 0, V as the homogeneous component of 

degree 1, and B(V) is generated in degree 1 as an algebra. Nichols algebras were 

introduced in [15] (see [2] for a general presentation of the construction of and 

recent developments in Nichols algebras). Their role in the classification theory 

for pointed Hopf algebras was emphasized in [5]. A fundamental question is 
whether the diagram R of A is just the Nichols algebra B(V) of the infinitesimal 

braiding of A. A positive answer to this question is equivalent to proving the 

conjecture that any finite dimensional pointed Hopf algebra is generated as an 
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algebra by the grouplike elements and the skew-primitive elements. Up to this 

conjecture, the lifting method for classifying finite dimensional pointed Hopf 

algebras A with coradical kP reduces to finding all the Yetter-Drinfeld modules 

V such that B(V) is finite dimensional, then describing the Nichols algebra B(V) 
by generators and relations for any such V, and finally finding A such that the 

associated graded Hopf algebra gr(A) is isomorphic to the biproduct B(V)#kF.  

Such an A is called a lifting of B(V)#kF. 

A major step in the classification problem was done in [5], where the approach 

was from the point of view of Lie theory. For certain Hopf algebras A (or for 

any A if the exponent of F is prime), the infinitesimal braiding has a generalized 

Cartan matrix as an invariant. Then the dimension of B(V) and the structure of 

this algebra, reflecting that of A, depend on this Cartan matrix and on its Dynkin 

diagram. As an example, the lifting method was used in [6] to describe liftings of 

Nichols algebras of Cartan type A2, and as a consequence classify pointed Hopf 

algebras of dimension p4, with p an odd prime. Also, the lifting method was used 

in [10] to classify pointed Hopf algebras of dimension 32. 

The main aim of this paper is to compute liftings of Nichols algebras of Cartan 

type B2. The description of these Nichols algebras is known (see [5] and [17]). 

We follow the general approach that was used in [6] for type A2. The problem of 

lifting the generators and relations from gr(A) to A has a combinatorial nature, 

and compared to the A2 case, the case of Cartan type B2 requires more compli- 

cated combinatorics. This is because the structure of the positive roots, which 
define a system of generators for the Nichols algebra, is more complicated in type 

B2. To deal with these combinatorial difficulties, we use a generalization of the 
quantum binomial fornmla presented in the Appendix. In Section 2 we compute 

the liftings in type B2. We require that the diagonal elements of the braiding 

matrix are primitive n-th roots of odd order not equal to 5. In fact, in type A2 

there was also a case for which the computation in [6] failed, more precisely the 
case where the diagonal elements of the braiding matrix were primitive roots of 

unity of order 3. In Section 3, we show how this remaining case can be completed. 

The first examples of infinite families of nonisomorphic Hopf algebras of the 

same dimension were liftings of quantum linear spaces [4], [9], [8] oi" [7], and 

E. Miiller's family of nonisomorphic nonpointed Hopf algebras with nonpointed 

duals [14]. However, A. Masuoka [12] showed that these infinite families consist 

of Hopf algebras that are all quasi-isomorphic, i.e., that any element of the family 

is a cocycle twist of any other, or equivalently, their categories of comodules are 

monoidally Morita Takeuchi equivalent (see [12] or [17]). We prove in Section 3 
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that for n ~ 5 and V of type B2 or for n ~ 3 and V of type A2, any two liftings 

of • (V)#kF are quasi-isomorphic. 

Recall from any standard text (such as [11]) the notation for q-factorials and 

q-binomial coefficients. Set (0)q = 0 and for n > 0, (n)q = qn-i + qn-2 + . . .  + 1. 
Set (0)!q = 1 and for n > 0, (n)!q = (n)q(n - 1)q. .-1.  Then 

( n )  _ (n)'q w h e r e O < i < n .  
i q (n - i)!q(i)!q 

If i, n or n - i is negative, then we set (?) = 0 .  q 

THEOREM 1.1: (i) (The q-Pascal identity). For n > k > 1, 

(nk)q= ( k - l l ) q + q k ( n - l k  ) q =  (n-k l ) q + q n - k ( n  k - l l ) q .  

(ii) (The q-binomial theorem). For x, z elements of some k-algebra with zx = 
qxz, q C k*, then 

i----O q 

For A a pointed Hopf algebra with coradical kF, we denote by P(A)g,h or 

Pg,h, i f A  is clear, the set {x: x E A,A(x)  = g |  For X E F, 

P~ = {x C Pg,h : Ix1-1 -- x(l)x for all l C F}. g,h 

Notatio,: We write Pg for Pg,1 and Fax for P~l" 

For any coalgebra C, gr(C), the graded vector space Co •C1/Co (~C2/C1 |  
is a graded coalgebra. If A is a pointed Hopf algebra, then gr(A) is a graded 

Hopf algebra. 
kF A Yetter-Drinfeld module V E krJ;/)  is a vector space with a left action of 

kF and a left coaction 5: V -+ kF | V, 5(v) = ~ v-1 | vo such that 5(hv) -- 
hv_ I h-1 | hvo for any h E P and v E V. 

Throughout, F will be a fixed finite abelian group and k an algebraically closed 

field of characteristic zero. 

2. Liftings of Nichols algebras of  type Bz 

For F our fixed finite abelian group, let V be a Yetter-Drinfeld module over kF 

of dimension 2. Then V has a basis {Xl, x~} over k such that  for i = 1, 2, the 

coaction is given by 5(xi) = gi | xi where gi C F, and the action is given by 

g --+ xi -- )ci(g)xi for some Xi E F, all g C F. The braiding matrix of V is 

( b l l  512 
B = l, b21 b22 ] 
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where bij = x j ( g i ) .  We assume that V has Cartan type B2, i.e., bijbji  = bi~i ~ for 

any i, j ,  where the ai j ' s  are the entries of the Cartan matrix of type B2 

( 2 - 1 )  
A =  - 2  2 " 

Thus we have 

b12b21 = b ~ ,  b21b12=b  -2  22 , 

so  

(1) b12b21b,1 = 1, b21b12b~2 = 1, b,1 =b~2. 

We assume that b22 = q is a primitive root of unity of odd order n and therefore so 

is bll = q2. We fix the Yetter-Drinfeld module V of type B2 as above throughout 

all this section. 

The Nichols algebra 13(V) has dimension n 4 (see [5] and [17]). It is presented 

by generators Xl, x2, z, u subject to the relations 

Z = X 2 X l  --  b 2 1 X l X 2 ;  

u = x 2 z  - b 2 1 b 2 2 z x 2 ;  

x l z - = b l 2 Z X l  ; 

x2u  =b21b~2ux2; 

uz  =bl lb21zu;  

X l U  : b 2 1 b 1 2 u x 1  + b~/(b~21 - 1)z:; 

Xr~ = Xr~ ~-Z n = ~t n = O. 

Then H = NV)#kF has dimension n4TI where IFI is the order of F. Our goal 

in this section is to find all Hopf algebras A such that d r ( A )  = H .  

Let A be such a lifting. By [4, Lemma 5.4], we have that A has coradical k[F] 

and P ( A ) h  = k ( h  - 1) unless h = gi, i = 1, 2. If h = g~ then Pg~ has dimension 

2 and Pg~ = k(gi  - 1) | kai  where kai  = P ~ .  The image of ai in A 1 / A o ,  is just 

xi. Thus we have A(ai) = gi | ai + ai | 1. For h E F, ha~ = x i ( h ) a i h  and, in 

particular, g j a i =  x i ( g j ) a i g j  = bj ia ig j .  

Let ~ denote the adjoint action and define elements 

(2) c = a 2 ~ a x = a 2 a l - b 2 1 a l a 2  and d = a 2 ~ c = a 2 c - b 2 1 b 2 2 c a 2 .  

The following lemma will be useful in determining the multiplication of the 

elements a l ,  a2 ,  c, d. 
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LEMMA 2.1 :  Let  n, x i , g i  be as above. The following assertions hold. 
n 

1. For i = l,  2, i f  ~( n r e, then P ( A ) ~  = O. 

2. Ei ther  (X~X2) ~ = e or  --~..~(g~o~)~ 

3. Ei ther  (X~X~) ~ = e or ~ ( g , ~ ) ~  = O. 

4. For n different f rom 5, P(A)X~ ~ = O. 
g~ g2 

X~X a 
5. I [ n  is dif ferent  f rom 3 a n d  5, then P(A)g~g ~ = O. 

Proo~ 
n 

1. I f x  n r e, t h e n  P ( A ) ~  r 0 impl ies  t h a t  ; ~  = Xj a n d  g~ --  gj where  

j = 1 or  2. I f  ~(~ = Xi t h e n  b n -  1 = 1, which  is imposs ib l e .  I f  X~ = X j ,  J ~ i, 

t h e n  1 = bij a n d  b~i -- bjj. B u t  s ince (b12b21) n = 1, th is  is imposs ib l e .  

2. S u p p o s e  (X1X2) n ~ ~ a n d  P t A  ~(nlx2)n J(9192)" r 0. T h e n  (X1X2) ~ = ;~i, so t h a t  

bii = bi). Also  (gig2)  ~ = gi, so t h a t  bi~ = bjni. Thi s  c o n t r a d i c t s  (bijbji) n = 1. 

3. S u p p o s e  (X1X2) n r e a n d  t '(A)(gig~) ~ ~ O. If  (X1~(2) = X1 a n d  (gig2)  = 

g l ,  t h e n  b ? l  1 : b l  2 n  : b212n s o  t h a t  1 = b~l, which  is imposs ib l e .  I f  

(X1X2) n --  X2 a n d  (gig22) ~ = g2, t h e n  "12~2n-1 = 1 = ~2,h2n-l" B u t  t h e n  

1 = (b12b21) 2~-1 = (b12b21) -1  = b11, a lso  a c o n t r a d i c t i o n .  

4. Fo r  n ~ 5, X~X2 r e. Fo r  i f x ~ x 2  = e, t h e n  b21b12 = 1 = b221b22. B u t  

t h e n  b12 = q - 4  a n d  b~l = q -1  so t h a t  q-Sq-1  = (b12b21)2 .~ q-4 so t h a t  
2 

q5 = 1, which  wou ld  i m p l y  t h a t  n = 5. T h u s  if P(A~ x ~ ,  jg~g~ r 0, t h e n  

g2g2 = gi for i = 1,2.  B u t  if g2g2 = g l ,  t h e n  gig2 = 1 so t h a t  b11b21 = 1 

a n d  b12b22 : 1. T h e  f irst  e q u a t i o n  impl ies  b12 ---- 1 so t h a t  the  second  

imp l i e s  b22 --  q = 1, which  is imposs ib l e .  I f  g~g2 = g2 t h e n  g~ = 1 so t h a t  

q4 __ 1, which  c o n t r a d i c t s  t he  a s s u m p t i o n  t h a t  n is odd .  

5. I f  X1X 3 = e t h e n  bllb32 = 1 = b21b32. T h e n  b~2 = q -2  a n d  b21 = q -3 .  

T h u s  (b12b21) 3 = q - l l  b u t  (blab21) 3 = q - 6  b y  (1). Since  n r 5, th i s  is 

a c o n t r a d i c t i o n .  T h u s  i f  P(2 i )g lg  3 ~ O, l~[A)glg3 : P(A)~:  for i = 1 ,2 .  

I f  g~g3 = g~, t h e n  g3 = 1 a n d  b32 = q3 = 1, which  c o n t r a d i c t s  the  fac t  

t h a t  n is no t  3. I f  g~g3 = g2, t h e n  g~g2 = 1 so t h a t  bl~b~l = 1 = b12b2~. 

M u l t i p l y i n g  the  second  e q u a t i o n  by  b2~ y ie lds  b21 = 1 a n d  t h e n  the  f irst  

e q u a t i o n  impl i e s  b l l  = 1. B u t  t h e n  q = 1, which  is imposs ib l e .  | 

S t r a i g h t f o r w a r d  c a l c u l a t i o n  shows t h a t  

(3) A ( c )  = gig2 | c +  c |  1 + (1 - q-2)a2gl  | al.  
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A(a lc )  = ( a l  | 1 + g, ~) al)(glg2 | C n t- C | 1 + (1 -- q-2)a2gl | a l )  

=alglg2 | c +  a l c |  1 + (1 -- q-2)ala2gl  | al + g2g2 | alc 

+ g l c |  al + (1 -- q-2)gla2gl  | a T 

A Ica l )  =(glg~ Q c + c Q 1 + (1 -- q-2)a~gl G a l ) Ia l  @ 1 + gl @ al)  

=glg2at | c + ca1 | 1 + (1--  q-2)a2glal  | al 

+ g~g2 | ca1 + cgl | al + (1 - q-2)a292 | a T. 

Then  using the relat ions (1), we see tha t  a l c -  b12Cal E P(A)X~ ~2 and thus by 
gl g2 

L e m m a  2.1 (4), if n # 5, 

(4) alc - b12Cal = O. 

Similarly, using the definition of d and the comult ipl icat ion of c and as,  we 

compute  

(5) A(d)  = d |  1 +glg~ |  q(1 - q-2)a2g,g  2 |  (1 - q-2)  (1 - q-1)a~g 1 |  

Further  compu ta t ion  shows tha t  da2 - bl2a2d is (gig23, 1)-primit ive and by 

L e m m a  2.1 (5), if n # 3, 5, then 

(6) da2 - bl2a~d = O. 

Now, using (4) and (6), we compute  

dal =(a~c - b21b22ca2)al 

=a2(b21b22alc) - b21b22c(b21ala2 + c) 

=b21b22(b21aia2 + c)c - b21b22(bl la lc)a2 - b21b22 C2 

(a c - b ,b  ca2) + - 1 )c  

so tha t  

(7) dal = (b21b22)2ald + (b21b22)(q- 1)c 2. 

A similar compu ta t ion  shows tha t  

(8) cd = bl2dc. 
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Now since al is (gl, 1)-primitive and q2 = x l (g l )  is a primitive n- th  root  of 
r t  

unity, we have tha t  a• �9 P ( A ) ~ } .  If  X• # e then we must  have tha t  a? = 0 since 
n 

P(A)Xg~ = 0, by Lemma 2.1 (1), but  if X? = ~, then a? = a(g~ - 1) for some 

c~ E k. By a similar argument  for a~ and rescaling the ai if necessary, we have 

n (9) ai = # i ( g n - 1 ) ,  w h e r e p i � 9  1 } , # i = O i f g ~ = l o r x ~ T t ~ .  

Remark  2.2: If  b~l # 1, or equivalently b~2 # 1, then #2 = 0 = Pl.  For suppose 
n b~l # 1. Then ~(1 (g2) = b~l # 1, so X~ # e and then # 1  = 0. Also since 

x~(gl)  = b~2 ~ 1, we have tha t  X~ # e, and then #2 = 0. 

Now we compute  c n and dn; these are the most  intricate computat ions.  

By Equat ion (3), A(c) = X + Y + (1 - q - 2 ) Z  where X = gig2 | c, Y = c | 1, 

Z = a2gl |  Then, since X Y  = q Y X ,  X Z  = q Z X ,  and q is a primitive n th  root  

of unity, we see tha t  A(c  n) = (X + Y + (1 - q - 2 ) z ) n  = X n -4- ( Y  + (1 - q - 2 ) z ) n .  

Now 
Z Y  - q Y Z  =a2glc  | al  - qca2gl | al  

=b12blla2cgl | al  - qca2gl | al  

=bt2b22dg1 | al .  

Let T denote dgl | a l .  Then it is easily checked tha t  Z T  = q ~ T Z  and 

T Y  = q 2 y T ,  so tha t  by Remark  A.7 of the Appendix,  (Y + (1 - q -2 )Z)n  = 

Yn + (1 - q - 2 ) n z n .  Thus 

A ( C  n)  = ( g l g 2 )  n | C n -~- C n | 1 -t- (1 - -  q - 2 ) n ( a 2 g l )  n | a? 

=(gig2)  ~ | c ~ + c n | 1 + (1 - q-2)'~b2~(n+l)/2(gl)'~#2(g ~ - 1) | a~ 

=(g ,g2)  ~ | c ~ + c n | 1 + (q2 _ 1)~p2(gl)n(g,~ _ 1) | a~, 

since b~l = 1 if #2 ~ 0 by Remark  2.2. Let 

(10) v = c ~ + #2(q 2 - 1)~a~. 

Then  A(v )  is 

(gig2) ~ | c ~ + c n | 1 + (q2 _ 1)n#2(gl)~(g~ _ 1) | a~ + #2(q 2 - 1)ng'~ | a~ 

+ # 2 ( q  2 --  1)na~ | 1. 

PrA~(X~x~)" . Thus by Lemma 2.1 (2), It  follows tha t  v �9 t j(g~g2)~ 

V = C n "~ # 2 ( q  2 --  1 ) n a ~  = A(g~g~ - 1) 
(11) 

where A = 0 if glng2n = 1 or (XtX2) n # e. 
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R e m a r k  2.3: If  b~2 r 1, then  A = 0. Indeed, ()/1X2)n(gl) = b~2 r 1, which 

forces A = 0. 

We now compute  d n. From (5), we see tha t  A(d)  = X + Y + bZ + T where 

X --gig22 | d, 

Y = d |  1, 

Z = a 2 g l g 2 |  and b = q ( 1 - q - 2 ) ,  

T = ( 1  q - 2 ) ( t  -1 2 
- - q ) a 2 g l |  

I t  is easy to check tha t  X Y  -- q 2 y x ,  Z Y  = q 2 y z ,  T Y  = q 2 y T ,  so t ha t  by 

Theorem (1.1)(ii), the q-binomial  theorem,  

/k(d n) = ( X  + bZ + T)  n + Yn  

and it remains  to compute  ( X  + bZ + T)  n. Straightforward compu ta t ion  yields 

tha t  

X Z  = q 2 Z X  and Z T  = q 2 T Z  

and we i l lustrate the type  of calculat ion involved by comput ing  X T .  We have 

X T  =(1  -- q - l ) ( 1  - q-2)(glg2 @ d)(a~gl @ el)  

=(1 q - l ) ( 1  -2  2 4 2 2 2 
- - q )b12b22a2glg 2 @dal  

=(1  q - l ) ( 1  -2 2 4 2 2 2 2 2 
- -  - q )b12b22a2glg2 | (b21b22ald + b21b22(q - 1)c 2) 

=(1 q - l ) ( 1  -2 2 2 2 2 3 2 2 2 q )(q a2glg2 |  (q c2). - - - 1)b12q a2glg 2 | 

Since Z 2 b a 2 2 2 ---- 12q 2 g l g 2  @ c2,  w e  h a v e  

(12) X T  = q 2 T X  + (1 - q-2)(1  - q -1) (q  _ 1)q2Z 2. 

Using Theorem A.1 in the Appendix ,  we see t ha t  

( X  + bZ + T)  n = X n + v ( n ) Z  n + T n 

and, by Corol lary A.5, v(n)  = a n +/3 n where a = q - 1,/3 = 1 - q-1 are the 

solutions of the equat ion y 2 _ q ( l _ q - 2 ) y +  ( l - q - 2 ) ( 1 - q - l )  (q_  1)q2/(q2_ 1) = 0. 

Thus  u(n) = ( q -  1) n + (1 - q-1)n = 2 ( q -  1) n and we have 

A ( d  n) =(gig2) n @ d n + d n @ 1 + 2(q - 1)n(a2glg2) n | c n 

+ ( q 2  1)n(q n 2 , 
- - 1 )  (a2g,)  |  

n n n n a n =(gig2)  n |  n + d  ~ |  a2g lg2 | 

+ (q2 1)~(q . ,~  2~ - - 1 )  a 2 g l  |  



10 M.  B E A T T I E ,  S. D A S C A L E S C U  A N D  S. R A I A N U  Isr .  J .  M a t h .  

where (a2glg2) ~ = (b22b12) ~(n- 1)/2 a2nglng2 n and v12h~(~- 1)/2 -- 1 i fa~  # 0 by R e m a r k  

2.2. Similarly (a2gl)  n 2n n - - - -a2  g l .  L e t  

(13) w = d ~ + 2(q _ 1)n#2cn + (q2 - 1)n(q - 1)n#2a12 n 

and then 

A(w) =(g ig2)  n |  ~ + d ~ | 1 + 2 ( q -  1)~p2(g~ - 1)(gig2) n |  n 

+ (q2 _ 1)n(q _ 1)np2(g~ _ 1)2g~ | a? 

+ 2(q - 1 TM n n C n ) #2g lg2  | + 2(q -- 1)n#2c n | 1 

+ 2(q - 1)np2(q 2 - 1)n(g~ - 1)g~ | a~ 

+ ( q 2  1)n(q . 2 n  . 1) P2al |  1 ) , (q  |  . . . .  1) #291 

=(gig2)  n | [d n + 2(q - 1)np2c n + (q2 _ 1)n(q _ 1)n#22a?] 

+ [d ~ + 2 ( q -  1)n#2c '~ + ( q 2 _  1 ) n ( q _  1)n#2a~] | 1 

l~n n n C n _ - 2 ( q -  ) #2gig2  | + ( q 2  1 ) n ( q - 1 ) ~ p 2 ( - 2 g ~ + l ) g ~ Q a  7 

1 n n n 2 n n n + 2 ( q -  ) P2(glg2) |  n + 2 ( q - 1 ) n ( q  2 - 1 )  P 2 ( g l ) ( g 2 - 1 ) |  1 

+ (q2 1)n(q ~ 2 n - - 1 )  #2gl |  

Thus  w is 2 ((gig2) , 1)-primit ive and so, by L e m m a  2.1 (3), we have 

(14) w d n + 2 ( q - 1 ) a # 2 c  n + ( q 2  1 ) n ( q _  ,~ 2 = - 1) # 2 a l  = " / ( ( g l g 2 )  n - -  1)  

where 7 = 0 if (X1X2)  n # ([ or (gig2) n = 1. 

R e m a r k  2.4: I f  b~l # 1, then 7 = 0. Indeed, (XIX~)~(g2) = b~l # 1, so 

(XIX~) ~ # ~, forcing 7 = 0. 

We find a character izat ion for the liftings of Nichols algebras of type  B2 similar 

to t ha t  in [6] for type  A2. The  following l e m m a  from [6] will be  useful. 

LEMMA 2.5 ([6, L e m m a  3.4 (i)]): Le t  X ,  Y, Z be e lements  in a k-algebra,  a ,  

scalars in k and n a na tura l  number.  I f  Y X  = a X Y  + Z and Z X  = / 3 X Z ,  then  

n- -1  

y x  = . n X n y  + 

i = 0  

and, i f  a # / 3  and (~n = fin, then  for n > 1, 

y X  n = a ~ X ~ y .  | 
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Define a Hopf algebra U + in the category k ry / )  b y k r  U + := k < X l , X 2 ,  Z, u[J~f >, 

where Af is the set of the first six relations defined at the beginning of this section, 

namely: 

(15) z = X 2 X l  -- b21XlX2,  

(16) u ----x2z - b21b22zx2, 

(17) X l  Z --bl2ZXl, 

(18) x2u =b21b~2ux2, 

(10) uz  =bub21zu,  

(20) x l u  =b;11b12uxl + b21(b; 1 - 1)z 2, 

and the comultiplication, action and coaction are defined such that  X b X e  are 

primitive and h . x i  = x i (h ) x i ,  5(xi) = gi | xi .  To see that  U + is well defined, we 

note that if we make the free algebra F generated by Xl and x2 into a braided 

Hopf algebra with Xl and x2 primitives, then AF(Af) c_ Af | F + F | Af, and 

this induces a braided Hopf algebra structure on U +. U + has a PBW basis 

{x~uJzrx~{ i, j ,  r, s >_ 0}. This follows from the fact that U + can be constructed 

from k[xl] by adjoining z, u, x2 by iterated Ore extensions defined by the relations 

(15)-(20). 

We define U to be the Radford biproduct U+#kF.  

THEOREM 2.6: Let  Pl, #2 C {0 ,  1} and A, 7 E k such that  

(21) p~ =0 

(22) =o 

(23) 7 =0 

i f  g n = l or x~ ~ e; 

�9 n Tt  rr  n i f  g ig  2 = 1 or X1X2 # e; 
�9 2 n  2 n  
l f ( ) ( ' l X 2 )  # e o r  ( g l g 2 )  ---- 1. 

Then the two-sided ideal d o f  U generated by the elements  

- . i ( g ~ -  l ) ,  i - - 1 , 2 ;  Yi := Xi 

V := Z n +/ - t2 (q  - -  1)nx~ - A(g~g'~ - 1);  

W : - - - - U  n + 2 ( q - 1 ) n # 2 z  n + ( q 2  1 ) n ( q  n 2 n 2 n 
- - 1) p2x, - "/((gig2) - -  1), 

is a H o p f  ideal o f  U. Moreover, A = A(F, V, (Pi)i, A, 7) = U / J  is a pointed  H o p f  

algebra of  dimension n4[F[ with coradical kF, and gr (A)  ~_ B(V)(CkF,  where V 

is our fixed Yetter-Drinfeld module  o f  type B2. 

Proof: Since, by the arguments preceding (9), (11) and (14), J is generated by 

skew-primitive elements, J is a Hopf ideal. Next we verify some commutation 
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re la t ions .  We have 

x2x~ 

zx~ 

ux~ 

zx~ 

ux~ 

Xl  z n  

X2 Zn 

n n 
~ - b 2 1 X l X  2 by L e m m a  2.5 w i th  Y = x2, X = X l ,  Z - -  z ,  o~ - -  b21,/3 = b21b~2; 

- -  n n -b21XlZ by  (17); 

= (b21) xlu, ----(X2Z -- b21b22zx2)x~ 2 n n . 

n n : b12b22,  ~ b12; = b l 2 X  2 z by L e m m a  2.5 w i th  Y = z, X = x2, Z u, ~ = = 

=b?2x~u'by (18); 

by (17); 

-o21--'~ z ~x2 by  L e m m a  2.5 w i t h  Y = x2, X = z, Z = u,  a = b21b22, 

= bllb21; 

UZ n = b ~ l Z n u  b y  (19); 

2 2 _-- b 2 . XlU n =o12 u.2~ nxl by L e m m a  2.5 w i th  Y = x l ,  X = u, Z = z 2, (~ = b12b22,/~ 12, 

x2u n =b~lu~x~ by (18); 

zu n =b~2u~z by (19). 

I t  r e m a i n s  to find the  c o m m u t a t i o n  b e t w e e n  x l  a n d  x~. 
_ _  Z~X n - 1  

Now XlX~ = b12b~2(x2xl ~ 2 , a n d  

t - 1  

-~- _ t 22) u22 2 ~t (b,2622)%z b 2( b x 
i = 0  

by L e m m a  2.5. 

T h u s  

X l X ~  1. b 2 ~ x ~ n - 1  2 b n - 1  n - 1  : i l l2  22~c2 l X  2 - - ( b 1 2 b 2 2 ) ( 1 2 5 2 2 )  x 2 z 

n - 2  

/ b b 2 ~b~-l~X-~ + ~  12 22J 12 (]__,b~2)b22x~ -2u" 
i = 0  

T h e n  

---- (b12b22) 2 X l  -~- -[- /~X 2 U xax  2 n-2 

n n 

~ "22v22~'2i h n - i  -b12 E b22 : 0 ,  = _ b ~ 2 / .  = n i c~ 

i----1 i ~ l  

a n d  we show t h a t  a = ~ = 0. 

I t  is easy to see t h a t  
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and tha t  

n--2 n - 3  n - 4  2(n--2) o {E 
=b12b22 b22 -[- 22 ) 

i=0 i----0 i=0 
n 3 n--1 q2(qn--2 =b12522{( q -- 1) + - 1) + . . .  + q2(n-2)(q _ 1) ) / (q  - 1). 

Now the expression in brackets is just  

(qn-1 + q2qn-2 + q4qn-3 + . . .  + q2~-3) _ (1 + q2 + q4 + . . .  + q2(n-2)) 

= q - l ( q n - 1  _ 1)/(q -- 1) -- (q2(n-i) _ 1)/(q2 _ 1), 

and put t ing  these expressions over a common  denominator ,  we see tha t  this is 0 

and so/3 = 0. 

We have proved tha t  
X l ~  ~ n n b12x2x1. 

We show now tha t  J is the right ideal generated by yi, i = 1, 2; v; w. 

Assume first tha t  b~2 = 1. Then  for h E F and i = 1, 2, we have 

1 n 

and, by (21), we always have (~(~(h) - 1)#i = 0. Also 

x2y l  = y lx2  and x l y l  = y l x l .  

Similar computa t ion  for the other generators shows tha t  J is the right ideal as 

well as the two-sided ideal generated by Yl, Y2, v, w. 

Ifb~2 r 1, then by Remarks  2.2, 2.3 and 2.4, we must  have #1 = #2 = A -- 7 = 0 

and then J is the two-sided ideal generated by x~, x~, z n, u'L The commuta t ion  

relations show immediately tha t  J is the right ideal generated by these elements. 

We prove now tha t  no non-zero linear combinat ion of the elements gx~uJzrx~ ,  

with g E F, 0 < i , j ,  r, s < n - 1, lies in J .  This will imply tha t  the dimension of  

A = U / J  is n 4 and also tha t  J A kF = 0, so kF embeds in A. To show this we 

proceed as in the proof  of [8, Proposi t ion 1.10]. Assume tha t  

E i j r s  O~g,i,j,r,sgX2U Z X 1 = E Yif i  + V f3 -'~ W f4 
9,i,j,r,s i=1,2 

for some f l ,  f2, ]3, f4 E U and some scalars ag,i,j,r,8, not all equal to zero. The 

commuta t ion  relations show tha t  U is a free module with basis 

{x~uJzr  x~l 0 <_ i , j , r , s  <_ n - t} 
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over the subalgebra B of U generated by F and x~, x~, z n, u n. If we write fi, 

1 < i < 4 in terms of this basis, we see that  there exist some F1,F2, F3, F4 E B 

such that  

Z yi~i § vF3 § wF4 �9 kF - {0}.  
i=1,2 

Clearly B is isomorphic as an algebra to an Ore extension R obtained from kF 

by adjoining the indeterminates ]I2, Y3, Y4, Y1 (identified with x~, u n, z n, x~) in 

that  order via Ore extensions with zero derivations. This shows that  the relation 

Z (Yi - Pi(g n - 1))qi + (Y4 + P2(q - 1)nY1 - A(g~g2 ~ - 1))q3 
i----1,2 

+(Y3 § 2(q - 1)n#2Y4 + (q: - 1)n(q - 1)np2y1 - 7((gig2) ~ - 1))q4 �9 kF - {0} 

holds in R for some qi, 1 < i < 4. The universal property for Ore extensions 

(see [8, Lemma 1.1]) shows that  there exists an algebra morphism 0: R -+ kF 

acting as identity on F and such that  0(Y~) = #i(g n - 1) for 1 < i < 2, O(Y4) =- 

- P l P 2 ( q  - 1)~(g~ - 1) + A(g'~g~ - 1), and 

O(Y3) = - 2(q - 1 )n#2( -# tp2(q  - 1)n(9[ - 1) + A(g'~g~ - 1)) 

_ (q2 _ l)n(q _ 1)np1#2(9~ _ 1) + 7((9X92) n -- 1). 

Then applying 0 to the above equation we obtain that  0 �9 kF - {0}, a contra- 

diction. 

We have thus proved that  the dimension of A is n4]FI and that  kF embeds in 

A. Since A is generated by F and the skew-primitive elements xl ,  x2, we see that  

A is pointed and the coradical of A is kF. 

For the last claim, we consider the algebra morphism 0: U -+ 9r (A)  which takes 

xi to the image of xi modulo kF in the homogeneous component of degree 1 of 

gr(A) .  Since A is generated as an algebra by F and xl ,  x2, this algebra morphism 
n - - 0 i n  is surjective. On the other hand, since x~ �9 kF in A, we have that  xi 

gr(A) .  Similarly, regarding the images of z, respectively u, in 9r(A) ,  they have 

degrees 2, respectively 3, and we also get that  z n = 0 and u ~ = 0 in gr(A) .  

Therefore O induces a surjective algebra morphism r from U/(x'~, x~, z n, u ~) ~- 

B ( V ) # k F  to gr(A) ,  and this morphism must be an isomorphism because of the 

dimensions. Obviously r is also a coalgebra morphism, and this ends the proof. 
| 

T H E O R E M  2 . 7 :  Let  A be a pointed H o p f  algebra with coradical kF and such that  

gr(  A ) ~- B( V ) # k F ,  where V is our fixed Yet ter-Drinfeld module  o f  type B2, such 
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that  n is odd and n ~ 5. Then A ~ A(F, V, (#i)i, A, ~) /'or some gi, Xi, Pi, A, 7 as 

in Theorem 2.6. 

Proo~ Suppose first tha t  n ~ 3. We have shown tha t  relations (4), (6), (7), (8) 

hold in A, so there exists a Hopf algebra morphism r A(F, V, (#i)i, A, 7) --+ A 

which takes xi to ai for i = 1, 2. By [4, Lemma 2.2] we have tha t  A is generated 

as an algebra by F, al  and a2, SO r is surjective. The dimension implies now tha t  

r is an isomorphism. 

Now suppose tha t  n = 3; in this case relation (6) has not been verified. Since 
p X i X  3 

n r 5, by the proof  of Lemma 2.1 (5), X1X 3 r e, so tha t  da2 - bl2a2d E *glg~ 

means gig 3 = gi and XIX 3 = Xi for i = l  or 2. If  i = 2, then the argument  is the 

same as in Lemma 2.1. If  i =  1, theng23 = 1 and X 3 = e .  But  t h e n a  3 = 0 b y  

(9) and thus a 3 --~ as = 0 = a2 ~ d = a 2 d -  b21b~2da2. Relation (6) follows from 

(1). m 

3. Quasi - i somorphism of  liftings 

Recall tha t  Hopf  algebras A and B are quasi-isomorphic if one is a cocycle twist 

of the other  and this implies tha t  their categories of comodules are monoidally 

Mori ta-Takeuchi  equivalent (see [12] or [17]). If  one of A or B is pointed or finite 

dimensional, then the converse holds. If  A and B are quasi-isomorphic, we write 

A ~ B .  

As well as the infinite families of nonisomorphic Hopf algebras of the same 

dimension obtained by lifting quan tum linear spaces tha t  were mentioned in the 

introduction,  such infinite families can also be easily constructed from liftings of 
kF B ( V ) # k F ,  where V E k r y / )  is of type A2 or B2. Recall tha t  V of type A2 means 

tha t  V = kx l  | kx2 and there exist gl,g2 E F and X1,X2 E F such tha t  for all 

g E F and i = 1,2, we have 

g -+ xi = )~i(g)xi and (f(xi) = gi | xi. 

Also for bij -- x j (g i )  as in Section 2, 

(24) b12b21b11 = 1 = b21b12b22, bll = b22 = q, 

where q is a primitive n t h  root  of unity, 

so tha t  the Car tan  matr ix  A determined from tile braiding matr ix  B -- (bij) is 
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kr The liftings of B ( V ) # k F  where V E k rYD is of type  A2 were determined in [6] 

where n > 3 or r is cyclic of order 3. 
kF For xl ,  x2 as above, a Hopf algebra U + E krY/ )  is defined in [6, Definition 3.5] 

by 

U + = k < Xl,Z, X21Z = xlx2 - b l2X2Xl ,  ZXl  -~ b21XlZ, x 2 z  : b21zx2 >, 

where the xi are primitive elements. Then  U is defined to be the Radford 

biproduct  U+ #kF .  

THEOREM 3.1 ([6, Theorems 3.6 and 3.7]): Let  A be a lifting o f l 3 ( V ) # k F  for 

V of type A2 as described above. I f  n is an odd integer greater  than 3 or i f  F is 

cyclic of  order 3, then A ~ U/J ,  where J is the Hopf ideal of  U generated by the 

skew-primitives 

x n - p i ( g ~ - l )  where l t iE{O,  1 } a n d p i = O i f g ~ = l o r x  n ~ e ,  

n n z n + u l ( q  - 1)nx  - - 1)  w h e r e  = 0 = 1 o r  X l X :  # 

Example 3.2 (cf. [6, Section 3]): Let F = <  g > be cyclic of order 49. Let q 

be a primitive 7-th root  of unity. Let  X E r be defined by x(g) = q. Define 

gl = g, g2 = g4, Xl = X, X2 = X 2- Let V = kxl  (~ kx2 where xi E V x~. Then  the 

matr ix  

B =  [b2a b22J = q4 q S = q  

and the Caf t an  matr ix  A is - 1  so V is of type A2. 

Let A(A) be the I-Iopf algebra 

U / <  x 7 - (1 - gT), x 7 _ (1 - (ga)7), z 7 _ (q _ 1)7(1 _ (94)7) _ A(1 - (gg4)7) > 

as in Theorem 3.1. 

For A ~ w, A(A) ~ A(w). For suppose f :  A(A) -+ A(w) is a Hopf  algebra 

isomorphism. Then  l ( a )  = g since, if f (g )  = g4, then f(g4)  = g16 ~ g. Thus  

f ( x l )  = c~yl + 6(1 - 9 7 ) ,  where Yi is the counterpar t  of xi in A(w). Commuta t ion  

with g shows tha t  5 -- 0 and c~ 7 = 1. Similarly, f (x2)  = ~y2 where/~7 = 1. Then  

f ( z )  = c~i3(yly2 - b12Y2Yl) = a/3w and 

(a~)Tw7 = w 7 = (q _ 1)7(1 _ g2S) _ A(1 - g35) = (q _ 1)7(1 _ g28) _ w(1 - g35), 

so A = w .  | 

We now describe the liftings for the remaining ease n = 3. Let  b/+ be the free 

algebra in the indeterminates Xl and x2. This is a Hopf  algebra in the category 
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kkrry/) by taking the xi ' s  to be primitive elements where 5(xi)  = gi | xi  and 

h ~ xi = x i ( h ) x i  for all h E F. Denote z = x lx2  - qx2xl .  We define/4 as the 

Radford biproduct  U + # k F .  

kF PROPOSITION 3.3: Suppose V E kpYT) is o f  type A2 and n = 3. Then any lifting 

o f  B ( V ) # k F  is isomorphic to U /  J where l.t is as defined above and J is the H o p f  

ideal o f  U generated by: 

3 ~ t i (g3  _ 1) w h e r e  # i  E {0, 1} a n d  # i  ~ 0 i f g  3 = 1 or X 3 r e; x i - 

�9 g2 {1, 2}, i 0 i fg~gj  1 X2Xj # e; zx i  - q~xiz - 7i ( i gj - 1), i C ~ j ,  7i = = or 

z 3 + # , (q  - 1)3x 3 + (1 - q)71(zx2 - q2x2z) - .~(g3g3 _ 1) 

3 3 where A = 0 i f  g3 g 3 = 1 or XIX2 ~ e. 

Proof." Let A be a lifting of B ( V ) # k F .  Let ai C A be the lifting of xi E V as in 

3 . i ( g  3 - 1) where Pi �9 {0, 1} and Pi = 0 if g 3 = 1 the B2 ease and as in [6], a i = 

or X a r e. For c = ala2 - b12a2al as in [6], then it is shown in [3, Lemma 3.1] 

px21x2 ~x~x~ If  x 2 x j  7k e for i , j  �9 {1,2}, tha t  cal --b21alc �9 "9~9= and a2c-b21ca2 �9 . g~gg �9 

or if r is cyclic of order 3, then we are in the si tuat ion of Theorem a.1. But  

for n = 3 and P not  cyclic of order 3, we could have ~/2~j = e; then the matr ix  

B = ( b i j )  = 

Then 

( 2 5 )  

Now as in the 

A ( e )  = 

Then we have 

X Y  

X Z  

Y Z  

X T  

Z T  

Y T  

X S  

( ~ qq ) wi th  q3 = 1. From n o w o n ,  w e a s s u m e t h i s i s t h e c a s e .  

cai -- qiaic = 7i(g2gj -- 1) 
2g for s o m e T i C k w i t h T i = 0 i f g i  j = l o r x ~ x j  Ce-  

calculation of (3), we have 

gig2 | c +  c •  1 + (1 - q2)alg2 | a2 = X + Y + (1 - q2)Z. 

the following commuta t ion  relations: 

= q Y X ;  

= q Z X  + ~/2q2T 

= q 2 Z y  + 71S 

=q2TX;  

= q T Z ;  

= q T Y  + "/1W 

= q 2 S X  + 72W; 

where T = a l g l g ~ Q ( g l g ~ - l ) ;  

where S =  ( g ~ g 2 - 1 ) g 2 |  

where W =  (g~g2 - 1 ) g l g ~ |  
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Y S  = q S Y ;  

Z S  = q 2 S Z ;  

T S =q2 S T .  

Direct  compu ta t ion  shows tha t  

A(c 3) =(x  + Y + (1  - q2)Z)3 

=(gig2)  3 |  3 + c  3 |  2 3 3 |  3 

+ ( 1  2 2 -- q ) '71"72glg2(g lg2  -- 1) | ( g l g ~  -- 1). 

Let  v -- c 3 + # l (q  - 1)3a 3 -t- (1 - q) 'h '72(glg g - 1). Then  

A ( ~ )  =(9~9~)  3 | ~ + c~ | 1 + (q - 1 ) ~ 1 ( 9 ~  - 1)9~ | a~ 

+ (1 2 2 2 _  - q)71729192(g192 - 1) | (9192 1) + # l (q  - 1)3a23 | 1 

+ # l ( q  - 1)3g 3 | a 3 -b (1 - q)71"72(g192 - 1) | 1 

+ (1 - q)717291g g | (gig~ - 1) 

=(gig2)  3 | [c 3 + (q - 1)3#1a 3 + (1 - q)~/l~/2(glg 2 - 1)] 

-t- [C 3 + P l ( q  --  1)3a23 -{- (1 --  q)" /1" /2(g i92  -- 1)] | 1 

--  ]~ l (q  --  1 )39  3 | a3  --  (1 --  q )~ i " f291g  2 | (g192 -- 1) 

4 - / ~ l ( q  --  1)3923 | a32 4- (1 --  q)"/1"/2919~ | (919~ -- 1) 

----(91g2) 3 | V 4- V | 1, 

3 3 
p~X2  If  3 3 3 3 X1X2 Xi = 1, and thus v E 9~a] " X1X2 r e, then  = for i = 1, 2, yielding q 

which is a contradict ion.  Therefore,  v = A(g3g 3 - 1) for some A E k. Now an 

a rgument  similar to the one in Theorem 2.6 shows tha t  the elements  hailcJa k, 

h E F , 0  <__ i , j , l , k  _< 2 are a basis for A, and the same a rgument  as in Theo rem 

2.7 completes  the proof. | 

Let  A(F, V, #1, #2, A, 71, ~/2) denote the Hopf  algebra L l / J ,  where L/is  the Hopf  

a lgebra  defined jus t  before Proposi t ion 3.3 and J is the Hopf  ideal generated by 

the  skew primitives:  

x n - #i(g'~ - 1) where i e {1 ,2} ,# i  e {0,1} and #i = 0 i fg~  -- 1 or X~ r e; 

z x i  - b 2 1 x l z  - ~i(g~g2 - 1), ~1 = 0 if g~g2 = 1 or ~ 2  r ~; 

ZX2 b ~ : x 2 z  2 - - 72(g291 1), 7~ 0 if 2 2 - = g2gl = 1 or X2X1 r e; 

z n + , i ( q  - 1 )nxt  + (1 - q )v l ( zx2  - b ~ : x 2 z )  - ~ ( g ' ~ 9 ' ~  - 1 )  

whereA 0 i f  " ~ l o r  , n e e .  = gl g2 ---- X1 X2 
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Then by Theorem 3.1 and Proposition 3.3, all liftings of Nichols algebras of type 

A2 are of this form. Now we show that all A(P, V, #1, #2, A, 71, 72) with the same 

7i are quasi-isomorphic. We write H ~ H '  if the Hopf algebras H and H '  are 

quasi-isomorphic. We use the key theorem from [12] together with comments 

from [13]. 

Recall that for K a Hopf algebra, the set Alg(K, k) is a group under the 

convolution product with the inverse to r E Alg(K, k) being given by r o S 

where S is the antipode of K.  The left action of Alg(K, k) on K is given by 

Cx = (IdK | ~b)A(x) and the right action by x r  = (~b | IdK)A(x) .  Two Hopf 

ideals I,  J in a Hopf algebra K are said to be conjugate if there is an algebra 

map ~p from K to k such that J = ~bI~b -1. Also, if K is a subHopf algebra of a 

Hopf algebra H and J is a Hopf ideal of K, then (J) will denote the Hopf ideal 

in H generated by J. 

THEOREM 3.4 ([12, Theorem 2], [13]): Suppose that K is a Hopf  subalgebra of 

a Hopf  algebra H. Let I, J be Hopf  ideals of K.  I f  there is an algebra map 

from K to k such that J = ~bI~ -1 and H/(~bI) is nonzero, then H/(~bI) is an 

( H / ( I),  H /  ( J) )-biGalois object and so the quotient Hopf  algebras H /  ( I),  H /  ( J) 

by the Hopf  ideals (I), (J) in H generated by I, J are monoidally Morita- Takeuchi 
equivalent. 

In the application of Masuoka's theorem, the following lemma will be useful. 

LEMMA 3.5: Let Ix" be a Hopf  algebra containing (g~, 1)-primitives x~, i = 1 , . . . ,  t. 

Let J be the Hopf  ideal of K generated by the xi and let L be the Hopf  ideal 

generated by xi - Ai(gi - 1),i = 1, . . .  ,t. Let ~ be an algebra map from K to k 
such that ~b(xi) = hi and ~b(h) = 1 for h grouplike. Then J and L are conjugate 
ideals in K.  

Proos Since S(xi)  = -g~-lxi,  r  = -A~. Thus 

r  = ( ~ Q I d | 1 6 2  = ~P(gi)gi(-Ai)+~(gi)xi+~(xi)  = x~-Ai (g i -1 ) ,  

and ~p- 1 j r  = L. | 

THEOREM 3.6: For V of type A2, and A = A(F, V, #1, g2, A, 71, 72) a lifting of 

13(V)#kF, then A is quasi-isomorphic to any other lifting 

I I A(r, V, at, ~2, ~, "fl, ~/2)- 

If'/1 = 0 then A ~ A(F, V, p~, #5, A', 0, "y~) and if?2 = 0 then 

! ! A ~ A(r, V, ,'L, ~ ,  ~, ~1, 0). 
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In  p a r t i c u l a r ,  i f  n > 3 or  F is c yc l i c  o f  o rder  3, t h e n  all  l i f t ings  o f  B ( V ) # k F  are 

q u a s i - i s o m o r p h i c .  

Proof ' .  First note that if b~j # 1, for i # j ,  then for n > 3 by an argument 

similar to Remark 2.2, bj n ~ 1 and the only possible lifting is the trivial one, 

A(F, V, 0, 0, 0, 0, 0). For n -- 3 this follows from the proof of Proposition 3.3. 
hn(n--1)/2 

Now assume b~l = b~2 = 1. Since n is odd, then also v21 = 1. First, we 

show that for a given 71, 72, #1, A(F, V, #1,0, 0, 71, 72) and 

A = A(r,  V, ~ ,  ~ ,  ~, ~ ,  ~2) 

are quasi-isomorphic for any #2 E {0, 1} and any A. 

Let M, ,  = / 4 / <  x ~ - # l ( g ~ - 1 ) ,  Z X l - b 2 1 x l z - 7 1 ( g 2 g 2 - 1 ) ,  z x 2 - b x 2 b 2 2 x 2 z -  

7 2 ( g i g  2 - 1) > where U is the Hopf algebra defined just before Proposition 3.3. 

Note that  v = z n + #l(q - 1)nx~ + (1 - q)3,172(glg 2 - 1) is (g'~g~, 1)-primitive 

in M,1. If 3'1 = 3'2 = 0, this follows from the proof of Theorem 3.1 [6, Theorem 

3.6], and if some 7i # 0, then we are in the situation of Proposition 3.3. We note 

that A(F, V, ~ ,  ~2, ~, ~1, ~2) = M , , / <  x'~ - p2 (g~  - 1),v - A(g'~g~ - 1) >. 

Since M ~  is obtained by adjoining xl ,  z and x2 via Ore extensions to kF and 

then factoring by a Hopf ideal, then we may let K be the Hopf subalgebra of 

M ~  generated by F ~, the subgroup of F generated by gl and g2, and by x~ and 

z n, i.e., by gl, g2, x~ and v. Since bi~ -- 1, the gi commute with x~ and z ~. Also 

z n and x~ commute. For, if 72 = 0, then x 2 z  = b21zx2 and, since b~l = 1, the 

commutation is clear. If 72 r 0, then n = 3, and the commutation of x 3 and z 3 

follows from Lemma 2.5 with Y = z, X = x2, a = q2, Z -- 72(gig22 - 1), ~ = 1. 

Thus the Hopf algebra K is a commutative polynomial algebra over kF ~ in the 

indeterminates x~ and z n. 

Now let ~: K -+ k be the algebra map defined by ~(gl) = r -- 1, ~(x~) = 

#2 and r  = A. Then ~ - l (x~ )  = - # 2  and r  = -A. By Lemma 3.5, the 

ideal J generated by the skew-primitives x~ and v and the ideal I generated by 

the skew-primitives x~ -#2(g~  - 1) and v - A ( g ~ g ~  - 1) are conjugate in K. Also 
X n . n ( r  # M ~  since ( r  is the Hopf ideal generated by 2 T P2g2 and v + Ag~g~ .  

Thus M ~ / ( J )  = A(F, V, #1,0, 0, 71, 72) and M,~ / ( I )  = A(F, V, Pl, #2, A, 71, 72) 

are quasi-isomorphic. 

Next, let 

M = H ~  < x ~ ,  z x l  - b21XlZ - 71(g1292 - 1), z x 2  - b12b22x2z - 72(gig 2 - 1) > .  

Then M ~  < x~, v > ~  A(F, V, 0, 0, 0, 71, 72) and M ~  < x'~ - (g'~ - 1), v > ~  

A(F, V, 1, 0, 0, 71, 72) and showing that J = <  x~, v > and I = <  x~ - (g~ - 1), v > 
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are conjugate Hopf ideals in some Hopf subalgebra of M will complete the proof. 

Let K be the Hopf subalgebra of M generated by gl, g2, x~ and z n. Again, gl 

and g2 commute with x~ and z n and if "~1 = 0, then z x l  = b21XlZ in M, so that  

x~ and z n commute. If 71% 0, then the commutation of x 3 and z 3 again follows 

from Lemma 2.5. Define an algebra map ~: K --+ k by ~(gl) = ~(g2) -- 1 for 

h E F, ~(x~) = 1, ~(v) = 0. Then Lemma 3.5 again yields that J and I are 

conjugate in K and so A(P, V,/.tl, P2, )~, "YI, 72)  ~'~ A(F, V, 0, 0, 0, 71, 72). If n > 3 

or F is cyclic of order 3, then 71 = 72 = 0, and all liftings of B ( V ) # k F  are 

quasi-isomorphic. 

Assume now that n = 3 and that we are in the situation of Proposition 3.3 

with X~X2 = X1X22 = •. Let L = L I / <  x 3, x 3, z x l  - q x l z ,  z 3 >, and let K be the 

commutative subHopf algebra of L generated by gl,g2 and the skew-primitive 

zx2 - q2x2z.  Define an algebra map ~z: K --+ k by ~(gl) = P(g2) = 1 and 

~ ( z x 2  - q2x2z)  = 72. Then as above, the Hopf ideals J generated by zx2  - q2x2z  

and I generated by zx2 - q2x2z - 72(glg~ - 1) are conjugate in S and so L / ( J )  

and L / ( I )  are quasi-isomorphic, i.e., A(F, V, 0, 0, 0, 0, 0) ~ A(F, V, 0, 0, 0, 0, 72)- 

Similarly, A(r,  V, 0, 0, 0, 0, 0) ~ A(r,  V, 0, 0, 0, 7~, 0). . 

QUESTION: For n = 3 and 71,72 nonzero,  is 

A(r,  V,0,0,0,71, ~2) ~ A(F, V,0,0 ,0 ,0 ,0)?  

A d d e d  in proof:  A. Masuoka has answered this question in the affirmative. His 

method of proof is very much in the style of the proofs in [12]. 

Now we consider the case where V is of type B2 and n % 5. I f A  ~ U / J i s  

the lifting determined by the scalars #1, #2, A, 7 as in Theorem 2.6, then we write 

A(F, V, #1, #2, A, 7). 

kr THEOREM 3.7: For V E k I . Y D  of type B2 and n ~: 5, a n y  two  l i f t ings o f l 3 ( V ) # k r  

are quas i - i somorphic .  

Proof:  As in the proof of Theorem 3.6, if b~j r 1, then only the lifting 

A(F, V, 0, 0, 0, 0) is possible. Therefore we assume that  b~2 = b~l = 1. 

We first show that A(F, V, 0, #2, 0, 0) ,,~ A(F, V, #1, #2, A, 7) for fixed #2 and 

any #1,A,7. Let M(#2) = U~ < x'~ - #2(g~ - 1) >, where U is defined just 

before Theorem 2.6. 

Recall that v, w defined in Section 2, equations (10), (13), are skew-primitives, 

as is x~. We write x~, v, w also for the images of these elements in M(#2) and 

note that they are still skew-primitive. 
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Now let K be the Hopf subalgebra of M(#2) generated by by g l ,  g2,  x'~, z n 

and u n. As in the proof of Theorem 3.6, as an algebra K is a commutative 

polynomial algebra over KF  ~ where F' is generated by gl, g2. 

Let ~ be the k-linear map from K to k defined by r = r = 1, r = 

Pl, ~b(v) = A, ~p(w) = 7. Then ~ defines an algebra map from K to k. In K,  let J 

be the Hopf ideal generated by x~, v and w and let L be the Hopf ideal generated 
n 2n by the skew-primitives x~ - #l(g~ - 1),v - A(g]~9~ - 1) and w - " / ( g i g 2  - 1). 

Then by Lemma 3.5, J and L are conjugate in K and, by [12], 

A(r, V, 0, ~2, 0, 0) ~ M(#2)/(J)  ,~ M ( p 2 ) / ( L )  "~ A(r, V, m, Us, ~, 7). 

Finally, we show that A(F, V, 0, 0, 0, 0) ~ A(F, V, 0, 1, 0, 0). Let 

M = u~ < x7 >, 

let K be the commutative Hopf subalgebra of M generated by gl, g2, x~, z n and 

u n, let r K -+ k be the algebra map defined by ~b(gi) = 1 = ~b(x~), r = 

r = 0. Now the same argument finishes the proof. I 

. A genera l i za t ion  of  t h e  q-binomial  t h e o r e m  

BY 

M.  BEATTIE,  S. DASCALESCU, ~. RAIANU AND I. RUTHERFORD* 

Throughout, we work over a field k, not necessarily algebraically closed. 

From Theorem 1.1 (i), it is straightforward to prove that 

(26) 
1 i (n+ n (i lq i ) ( j ) =  ( i  1 ) ( ~  1 n - 

Now we prove the generalized quantum binomial theorem used in the calcula- 

tions in this paper. However, this theorem is interesting in its own right. 

THEOREM A. 1 : S u p p o s e  that q E k* a n d  A E k and, f o r  x ,  t ,  z i n  some k - a l g e b r a ,  

we have the f o l l o w i n g  r e l a t i o n s :  

(27) x z  = q z x ;  z t  = q t z ;  x t  = q t x  + A z  2. 

* Ian Rutherford was supported by an NSERC Undergraduate Student Research 
Award at Mount Allison University in the summer of 2000. 
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Then (o) (i) 
(x + bz + t) n = i j 

i = 0  j=O q q 

where v = Vb,.\ iS a function from N to k defined recursively by v(0) = 1, v(1) = b, 

and v(n) = bv(n - 1) + A(n - 1)qV(n - 2), for n > 2. 

Proof'. The proof is by induction. The formula can easily be checked for n = 1, 2. 

Now assume that the formula holds for n = k, and we show that it is valid for 

n = k + 1. First we note that it follows directly from Lemma 2.5 or from a simple 

induction argument that 

(28) xt n = qntnx + Xq n-1 (n)qt n- lz2. 

Then we compute 

(x + bz + t) k+l =(x  + bz + t)(x + bz + t) k 

~ ( k )  ( j ) v ( i  j ) ( x+bz+t ) t J z i - Jx  k-i 
i = 0  j = 0  i q q 

= ~ v ( i -  j)((qJtJx + ~qj-1 (j)qtJ-1 z2)zi-jxk-i 
i = 0  j = 0  q q 

+ qJbtJzi-J+lxk-i + tJ+lzi-Jx k-i) by (28) 

= ~ s (ki) ( ; )  u( i- j )(Aqj- l( j )qtJ- lz2+i-Jxk-i  
i=O j=O q q 

-F q i t J z i - J x  k + l - i  + q J b t J z i - j + l x  k - i  + t J + l z i - J x k - i ) .  

Now l e t i ' = i + l , j ' = j - l , j " = j + l  and then 

k+l i'-2 ( k ) ( i ' - t ~  v(i , . , . ,  (x + bz + t) k+l = Z Z i' - i j, + - 2)Aq ~ (3 + l ) q  
i ' = l j ' = - I  q l ] q  

X tJ'zi~-J~x k+l - i '  

k i v(i - j)qitJzi-Jxk+l-i 
+ i j 

i = 0  j = 0  q q 

i~=1 j = 0  q q 

k + l  i ~ 

E j ~ ,  1 (  k ) ( i ' - 1 1 )  ,, . . . . . . . . . .  + i ' - i  j " -  v ( i ' - j  )t 3 z ~-3 xk+l-~ ,  
i ~ = 1 "  = q q 
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and then, using the fact tha t  (m) _- 0 if s > m or s < 0 and (0)q = 0, we have q 

tha t  

(X + bz + t) k+l 

=~__~,~L~.k+l ( k ) ( i - 1 ) i _ 1  j ( i - J l ) ~ ) q u ( ~ - j - 2 ) ~ q j ( j + l ) q t j z i - j x k + l - ~  
i=0  j=O q q 

k-l-1 i 

§ 

i=0  j = 0  q \ j  / q 

�9 

i=0  j = 0  q q 

k+l i ( k ) ( ~ - 1 ) v ( i _ j ) t J z i _ J x k + l _  i 

§  i-1 1 
i=0  j=O q q 

~-- ~-~ i ( k ) ( i  _ 1 j (bv(i - j - 1 )  + Av(i - j - 2)(i - j - l)q)qJ 
i=0  j=O " q q 

x •(i - j ) t J z i - J x  k + l - i  

by the definition of v 

-- E ~ (k  +i 1 u ( i -  j ) tJzi-Jx k+l-i by (26), as required. II 
i=O j----0 q q 

Remarks  A.2: (i) If A = 0, then (x + bz + t)" = ((x + bz) + t) n where (x + bz)t = 
qt(x + bz), and so the same result may be obtained directly from the q-binomial 

theorem (Theorem 1.1(ii)). 

(ii) Suppose q is a primitive n th  root  of unity. Then  (?) = 0 unless i = 0 or q 

i = n, and the formula in Theorem A.1 becomes (x+bz+t) n -- xn+vb,~(n)zn+t n. 

The  description of (x + bz + t) n would now be complete if we had a general 

formula for ub,~(s). 
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PROPOSITION A.3: If  q = 1 and b ~ 0 then, for n >_ 0, 

hi2 
( n ) ~ b n - 2 i ~ i .  

Z 2i 2 (i.) 
i=0 

n Proo~ Note that since (2i) = 0 if 2i > n, the summation is from 0 to [n/2J. 

First, if n = 0, we check that (Oo) 7v6i. " ~  ~oxo~ = 1 and, if n = 1, the formula gives 

(1~ o.' ~l = b. Now suppose the formula holds for n < k + 1 and we compute o) Y0-6! ~ 
v(k + 2) = bv(k + 1) + (k + 1))~v(k). By the induction assumption, this is 

(k+t ) /2 (k+l )  (2i)!bk+2_2i~i k / 2 ( k )  (2i)! k-2i i+l 
E 2i 2'(i]) - + E  2i ( k + l ) ~ b  A 
i=O i=0  

----E(k+2)/2(k+l) (2 i ) ' bk+2-2 i~ i2 i  

i=0 

(k+2)/2( k -  2i' -- 2) (2i' -- 2)1 k ' ' 
+ ~ ( k + l )  . . . .  " h + ~ - 2 ~ - ~  

2 i , _ 1 ( ( i ,  _ i ) ! ) ~  A 
i~=0 

where i' = i + 1 

(k+2'/2 ( k + l )  (2i)! ( k + l ~  ( 2 i - 1 ) ] ) b k + 2 _ 2 i A i  
= E ( 2i ~ + \ 2 i -  1] 2'--T(-(7---T)!) 

i=0  

(k+2) /2  k + 2  bn+2_2i~i" 
= E 2i 

| 

i=0  

If q r 1, there is a formula for the computation of u(n) in terms of a,  ~ (c~, fl 

possibly lie in some extension field of k) where a +/~ = b and aS = )~/(q - 1). 

PROPOSITION A.4: Suppose that q ~ 1. Let a, ~ be the roots of the polynomial 
y2 _ bY + )~/(q - 1) in some extension field-k of k. Then 

i=o k z / q  
Proo~ Since x + bz + t = (x + az) + (/~z + t), and since (x + (xz)(Zz + t) = 
q(~z + t)(x + az), we have by the q-binomial theorem (Theorem 1.1) that  

(n )  (~z + t)i(x + ~z)n_ i (x + bz + t) n = i 
i=O q 

i=0  i q _ q k=O q 
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C o m p a r i n g  t e rms  in this  formula  wi th  the one in Theorem A.1, we see t h a t  

( n  ~ .(m)zmxn_m ~ ~ ( ~ )  ( n - - i )  (13z)i(az)kxn_i_ k 

m=O \ m / q i=o k=O q k q 

w = O  i=O q \ W  - -  ~ ] q 

C o m p a r i n g  coefficients of  z'~x n -m ,  we ob t a in  

q i=o q \ m  - z /q  

and  then,  l e t t ing  m = n, we ob t a in  the  s t a t emen t .  | 

COROLLARY A.5 :  I f  q is a primit ive n th  roo t  of  unity, and  n > 1, then 
u(n) = a n + 3  n e k. 

If  b=0,  then  9(1) = b = 0, and  since u(2n + 1) = bp(2n) + A(2n)qu(2n - 1), 

it  is clear t ha t  , ( 2 n + l )  = 0 for n >_ 0. However,  v(0) = 1, u(2) = A(1)q, 

9(4) = A2(3)q, and,  in general ,  u(2n) = An(2n - 1)q(2n - 3 ) q . . .  (1)q. 

COROLLARY A.6  (to Theorem A.1):  For  x, z, t, q, A satisfying (27), 

i u(2m)ti_2mz2,~xn_i.  
(x + t )"  = i - 2m 

i = 0  r n = 0  q q 

Proo~ A p p l y i n g  Theorem A.1 wi th  b = 0, we have 

(x + t) n = i \ 3 / q  
i = 0  j = 0  q 

�9 n 

i = 0  k = 0  q 

i-=0 r n = 0  q 

Remark  A. 7: Suppose  x, t, s are such t ha t  

x8 = q2 sx, st = q2ts and xt  = qtx + As, 

i.e., the  re la t ions  (27) hold wi th  s = z 2. Then  if q is a p r imi t ive  n t h  root  of un i ty  

and  n is odd,  (x + t) '~ = x n + t n. 
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